Filter Design HDL Coder

For Use with MATLAB®

Computation
Visualization

Programming

User’s Guide ...<‘\The MathWorks

Version 1

X L9

How to Contact The MathWorks:

www . mathworks . com Web

comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Filter Design HDL Coder User’s Guide
© COPYRIGHT 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may
be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and
Documentation by, for, or through the federal government of the United States. By accepting
delivery of the Program or Documentation, the government hereby agrees that this software

or documentation qualifies as commercial computer software or commercial computer software
documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS
252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights
specified in this Agreement, shall pertain to and govern the use, modification, reproduction,
release, performance, display, and disclosure of the Program and Documentation by the federal
government (or other entity acquiring for or through the federal government) and shall supersede
any conflicting contractual terms or conditions. If this License fails to meet the government’s needs
or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered
trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:
June 2004 Online only New for Version 1.0 (Release 14)

Getting Started

1

What Is the Filter Design HDL Coder? 1-2
Expected Userscouiiiiiiiiiiieennnnnnnn. 1-3
Key Features and Components 1-3
FDATool Plug-In —the GUI 1-4
Command-Line Interface 1-5
Quantized Filters —theInput 1-6
Filter Properties — Input Parameters 1-7
Generated HDL Files — the Output 1-8

Installation 1-9
Checking Product Requirements 1-9
Installing the Software 1-9

Getting Help with the Filter Design HDL

Coder i 1-10
Information Overview iuo.. 1-10
OnlineHelp 1-11
Using “What’s This?” Context-Sensitive Help 1-11
Demos and Tutorials 1-12

Applying the Filter Design HDL Coder to the Hardware
Design Processcuiiiiiiiiiennnnnnn. 1-13

Tutorials — Generating HDL Code for Filters

2

Creating a Directory for Your Tutorial Files 2-2

Basic FIR Filter Tutorial 2-3
Designing a Basic FIR Filter 2-3

ii

Contents

Quantizing the Basic FIR Filter 2-5
Configuring and Generating the Basic FIR Filter’s VHDL

Code .o e e e 2-8
Getting Familiar with the Basic FIR Filter’s Generated VHDL

Code .. e e 2-15
Verifying the Basic FIR Filter’s Generated VHDL

Code .. e e 2-16

Optimized FIR Filter Tutorial 2-23

Designingthe FIRFilter 2-23
Quantizingthe FIRFilter 2-25
Configuring and Generating the FIR Filter’s Optimized Verilog

Code ..o e e e e 2-28
Getting Familiar with the FIR Filter’s Optimized Generated

VerilogCodettt 2-35
Verifying the FIR Filter’s Optimized Generated Verilog

Code .. e e e 2-37

IIR Filter Tutorial 2-43

DesigninganIIR Filter 2-43
Quantizingthe IIR Filter 2-45
Configuring and Generating the IIR Filter’s VHDL

Code .o e e 2-49
Getting Familiar with the IIR Filter’s Generated VHDL

Code .o e e e 2-55
Verifying the IIR Filter’s Generated VHDL

Code ..o e e e 2-56

Generating HDL Code for a Filter Design

Overview of Generating HDL Code for a Filter

Design i e e e 3-3
Opening the Generate HDL Dialog 3-4
What Is Generated by Default? 3-9

Default Settings for Generated Files 3-9

Default Settings for Register Resets 3-10

Default Settings for General HDL Code 3-10

Default Settings for Code Optimizations 3-11
Default Settings for Test Benches 3-12
What Are Your HDL Requirements? 3-13
Setting the Target Language 3-18

Setting the Names and Location for Generated HDL

Files e 3-19
Setting Filter Entity and General File Naming

St rINgS .t e e 3-20
Redirecting Filter Design HDL Coder Output 3-21
Setting the Postfix String for VHDL Package

Files ..o e 3-22
Splitting Entity and Architecture Code into Separate

Files ..o e e 3-23

Customizing Reset Specifications 3-26

Setting the Reset Style for Registers 3-26
Setting the Asserted Level for the Reset Input

Signal ... e 3-28

Customizing the HDLCode 3-29

Specifying a Header Comment 3-30
Specifying a Prefix for Filter Coefficients 3-32
Setting the Postfix String for Resolving Entity or Module Name

Conflictsc.oiiiii it it i 3-33
Setting the Postfix String for Resolving HDL Reserved Word

Conflictso i e 3-34
Setting the Postfix String for Process Block

Labels ... e 3-37
Naming HDL Ports 3-38
Specifying the HDL Data Type for Data Ports 3-40
Suppressing Extra Input and Output Registers 3-42
Minimizing Quantization Noise for Fixed-Point

Filtersoiii i e e 3-43
Representing Constants with Aggregates 3-45
Unrolling and Removing VHDL Loops 3-46
Using the VHDL rising_edge Function 3-47
Suppressing the Generation of VHDL Inline

Configurationsciiiiiiiiiiiennnnnnn. 3-48

iii

iv

Contents

Specifying VHDL Syntax for Concatenated

ZBTOS .ttt e 3-49
Suppressing Verilog Time Scale Directives 3-50
Suppressing the Initialization of Signals of Type

REAL .. e e 3-51
Specifying Input Type Treatment for Addition and Subtraction

Operationsc.uiiiiiiiiii e 3-52

Setting Optimizations 3-54
Optimizing Generated Code for HDL 3-55
Optimizing Coefficient Multipliers 3-55
Optimizing Final Summation for FIR Filters 3-57
Optimizing the Clock Rate with Pipeline

Registers e 3-58

Setting Optimizations for Synthesis 3-59

Customizing the Test Bench 3-61
Renaming the Test Bench 3-61
Specifying a Test Bench Type 3-62
Configuringthe Clock 3-65
Configuring Resets 3-67
Setting a Hold Time for Data Input Signals 3-69
Setting an Error Margin for Optimized Filter

Code .o e e e 3-70
Setting Test Bench Stimuli 3-72

Generating the HDL Code 3-74

Testing a Filter Design

Overview of the Test Methods 4-2
Testing with an HDL Test Bench 4-3
Generating the Filter and Test Bench HDL Code 4-3
Starting the Simulator 4-7
Compiling the Generated Filter and Test Bench
Files ..o e e e 4-7
Running the Test Bench Simulation 4-8

Testing with a ModelSim Tcl/Tk DO File 4-12
Generating the Filter HDL Code and Test Bench DO

File ... i e 4-12
Starting ModelSim 4-15
Compiling the Generated Filter File 4-16
Execute the ModelSim DO File 4-17

Properties — Categorical List

5

Language Selection Properties 5-2
File Naming and Location Properties 5-2
Reset Properties, 5-2

Header Comment and General Naming

Propertiest 5-3
Port Properties i, 5-4
Advanced Coding Properties 5-4
Optimization Properties 5-6

Test Bench Propertiesc...... 5-6

vi

Properties — Alphabetical List

6

Functions — Alphabetical List

7

A

Examples

Tutorials i e A-2
Basic FIR Filter Tutorial A-3
Optimized FIR Filter Tutorial A-4
IIR Filter Tutorial A-5
Index

Contents

Getting Started

This chapter introduces you to the Filter Design HDL Coder by discussing

the following topics:
“What Is the Filter Design HDL
Coder?” (p. 1-2)
“Installation” (p. 1-9)

“Getting Help with the Filter Design
HDL Coder” (p. 1-10)

“Applying the Filter Design HDL
Coder to the Hardware Design
Process” (p. 1-13)

Describes key product features and
components

Explains how to install and set up
the Filter Design HDL Coder

Discusses ways of applying the Filter
Design HDL Coder to the hardware
design process, including signal
analysis, algorithm verification, and
reference design validation

Identifies and explains how to gain
access to available documentation
and online help resources

1 Getting Started

What Is the Filter Design HDL Coder?

The Filter Design HDL Coder accelerates the development of
application-specific integrated circuit (ASIC) and field programmable gate
array (FPGA) designs and bridges the gap between system-level design and
hardware development by generating hardware description language (HDL)
code based on filters developed in MATLAB®. Currently, system designers
and hardware developers use HDLs, such as very high speed integrated
circuit (VHSIC) hardware definition language (VHDL) and Verilog, to develop
hardware designs. Although HDLs provide a proven method for hardware
design, the task of coding filter designs, and hardware designs in general, is
labor intensive and the use of these languages for algorithm and system-level
design is not optimal.

Using the Filter Design HDL Coder, system architects and designers can
spend more time on fine-tuning algorithms and models through rapid
prototyping and experimentation and less time on HDL coding. Architects
and designers can efficiently design, analyze, simulate, and transfer system
designs to hardware developers.

In a typical use scenario, an architect or designer uses the Filter Design
Toolbox, its Filter Design and Analysis Tool (FDATool), and the Filter Design
HDL Coder to design a filter. Then, with the click of a button, the Filter
Design HDL Coder generates a VHDL or Verilog implementation of the
design and a corresponding test bench. The generated code adheres to a clean
HDL coding style that enables architects and designers to quickly address
customizations, as needed. The test bench feature increases confidence

in the correctness of the generated code and saves potential time spent on
test bench implementation.

The following sections discuss

e “Expected Users” on page 1-3

¢ “Key Features and Components” on page 1-3
¢ “FDATool Plug-In — the GUI ” on page 1-4

¢ “Command-Line Interface” on page 1-5

® “Quantized Filters — the Input” on page 1-6

What Is the Filter Design HDL Coder?

¢ “Filter Properties — Input Parameters” on page 1-7

® “Generated HDL Files — the Output” on page 1-8

Expected Users

Filter Design HDL Coder users are system and hardware architects and
designers who develop, optimize, and verify hardware signal filters. These
designers are experienced with VHDL or Verilog, but can benefit greatly from
a tool that automates HDL code generation. The Filter Design HDL Coder
interface provides designers with efficient means for creating test signals
and test benches that verify algorithms, validating models against standard
reference designs, and translate legacy HDL descriptions into system-level
views.

Users are also expected to have prerequisite knowledge in the following
subject areas:

® Hardware design and system integration

VHDL or Verilog

MATLAB

¢ Filter Design Toolbox

¢ HDL simulators, such as ModelSim®

Key Features and Components
Key features and components of Filter Design HDL Coder include

® Graphical user interface (GUI) plug-in to the Filter Design and Analysis
Tool (FDATool)
¢ MATLAB command line interface
® Support for the following filter structures:
= Finite impulse response (FIR)
= Antisymmetric FIR
= Transposed FIR
= Symmetric FIR

1-3

1 Getting Started

14

Second-order section (SOS) infinite impulse response (IIR) Direct Form I
SOS IIR Direct Form I transposed

= SOS IIR Direct Form II

= SOS IIR Direct Form II transposed

® Generation of code that adheres to a clean HDL coding style

e Options for optimizing numeric results of generated HDL code

® Options for controlling the contents and style of the generated HDL code
and test bench

e Test bench generation for validating the generated HDL filter code
e VHDL, Verilog, and ModelSim Tcl/Tk DO file test bench options

FDATool Plug-in — the GUI

The Filter Design HDL Coder graphical user interface (GUI) is a plug-in
component of the FDATool and is accessible from the FDATool Targets menu.
Given that you have designed, or at least opened, a quantized filter in the
FDATool, you can generate HDL code for that filter with the Generate
HDL dialog. To open this dialog, click Targets->Generate HDL. The main
dialog appears, showing the title Generate HDL and the filter’s structure
and order. The following dialog indicates that the input is a Direct Form II
transposed filter with an order of 50.

What Is the Filter Design HDL Coder?

=) Generate HDL {Direct-Form FIR, order = 50) ’ -10] =]
__ HOL fitter
Filter target lanousge: IVHDL d
Mame:; Jritter
Target directory: Jhelisrc

Reset type: IAgynchrgngug d Rezet asserted level: I.i\.dive-high = I
Coeff multipliers: IMurtipIier d FIR acder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

More Options .. |

[¥ Impulze responze

__Test hench types

Mame: [fiter_th
[¥ Step response

[+ “HOL file [¥ Ramp response
I verlog fle [+ Chirp response

[# White noise response
[~ ModelSim o file [User defined response

Test Bench Options ... I |

Ok I Cancell Help I Applyl

Chapter 3, “Generating HDL Code for a Filter Design” explains how to use the
GUI to customize HDL code generation to meet project-specific requirements.

Command-Line Interface

You also have the option of generating HDL code for a filter with the Filter
Design HDL Coder command-line interface. You can apply functions
interactively at the MATLAB command line or programmatically in an M-file.
The following table lists available functions with brief descriptions. For more
detail, see Chapter 7, “Functions — Alphabetical List”.

1-5

1 Getting Started

1-6

Function Purpose
generatehdl Generate HDL code for quantized filter
generatetb Generate test bench for quantized filter

generatetbstimulus Generate and return test bench stimuli

Quantized Filters — the Input

The input to the Filter Design HDL Coder is a quantized filter that you design
and quantize in one of two ways:

Design and quantize the filter with the Filter Design Toolbox

Design the filter with the Signal Processing Toolbox and then quantize
it with the Filter Design Toolbox

The Filter Design HDL Coder supports the following filter structures:

Finite impulse response (FIR)

Antisymmetric FIR

Transposed FIR

Symmetric FIR

Second-order section (SOS) infinite impulse response (IIR) Direct Form I
SOS IIR Direct Form I transposed

SOS IIR Direct Form II

SOS IIR Direct Form II transposed

Each of these structures supports fixed-point, quantization type, and
floating-point (double) realizations. The FIR structures also support unsigned
fixed-point realizations.

Note Filter Design HDL Coder does not support zero order sections for IIR
filters.

What Is the Filter Design HDL Coder?

The quantized filter must have the following data format characteristics:

¢ Fixed-point signed or unsigned
® Double floating-point precision
For information on how to design filter objects, see the Filter Design Toolbox

and Signal Processing Toolbox documentation. For information on quantizing
filters, see the Filter Design Toolbox documentation.

Filter Properties — Input Parameters
The Filter Design HDL Coder generates filter and test bench HDL code for

a specified quantized filter based on the settings of a collection of property
name and property value pairs. The properties and their values

® Contribute to the naming of language elements

® Specify port parameters

¢ Determine the use of advanced HDL coding features

All properties have default settings. However, you can customize the HDL
output to meet project specifications by adjusting the property settings with
the Filter Design HDL Coder GUI or command line interface. As an FDATool
plug-in, the GUI enables you to set properties associated with

¢ The HDL language specification

¢ Filename and location specifications

® Reset specifications

e HDL code customizations

e HDL code optimizations

e Test bench customizations

You can set the same filter properties by specifying property name and
property value pairs with the functions generatehdl, generatetb, and

generatetbstimulus interactively at the MATLAB command line or in
M-code.

1-7

1 Getting Started

1-8

The property names and property values are not case sensitive and, when
specifying them, you can abbreviate them to the shortest unique string.

This chapter explains how to apply property settings to customize HDL
code generation for a specific application. For lists and descriptions of the
properties and functions, see Chapter 5, “Properties — Categorical List” and
Chapter 7, “Functions — Alphabetical List”, respectively.

Generated HDL Files — the Output

Based on the interface you use and the input data you specify, the Filter
Design HDL Coder generates filter and filter test bench HDL files as output.
If the filter design requires a VHDL package, the Filter Design HDL Coder
also generates a package file.

The GUI generates all output files at the end of a dialog session. If you choose
to use the command line interface, you generate the filter and test bench HDL
files separately with calls to the functions generatehdl and generatetb.

By default, the Filter Design HDL Coder places the output files in a
subdirectory named hdlsrc, under the current MATLAB directory, and names
the files as follows, where name is the value of the Name property.

Language File Name
Verilog Filter name .v
Filter test bench name_tb.v
VHDL Filter name .vhd
Filter test bench name_tb.vhd
Filter package (if name_pkg.vhd
required)

Installation

Installation

The following sections discuss installation:

¢ “Checking Product Requirements” on page 1-9
¢ “Installing the Software” on page 1-9

Checking Product Requirements
Filter Design HDL Coder requires the following:

e MATLAB
¢ Filter Design Toolbox
¢ Signal Processing Toolbox

¢ Fixed-Point Toolbox

Installing the Software

For information on installing MATLAB, the Signal Processing Toolbox, the
Filter Design Toolbox, the Filter Design HDL Coder, and optional software,
see the MATLAB installation instructions.

1-9

1 Getting Started

1-10

Getting Help with the Filter Design HDL Coder

The following sections explain how to get help with using the Filter Design

HDL Coder:

¢ “Information Overview” on page 1-10

® “Online Help” on page 1-11

¢ “Using “What’s This?” Context-Sensitive Help” on page 1-11

* “Demos and Tutorials” on page 1-12

Information Overview

The following information is available with this product:

Chapter 1, “Getting Started”

Chapter 2, “Tutorials —
Generating HDL Code for
Filters”

Chapter 3, “Generating HDL
Code for a Filter Design”

Chapter 4, “Testing a Filter
Design”

Chapter 5, “Properties —
Categorical List”

Explains what the product is, how to
install it, how you might apply it to the
hardware design process, and how to
gain access to product documentation and
online help.

Guides you through the process of
generating HDL code for a sampling of
filters.

Explains how to use the Filter Design
HDL Coder to generate HDL code for a
filter design. Provides details on how HDL
code is mapped to MATLAB code and vice
versa.

Explains how to apply generated test
benches.

Lists filter properties by category.

Getting Help with the Filter Design HDL Coder

Chapter 6, “Properties — Provides descriptions of properties

Alphabetical List” organized alphabetically by property
name.

Chapter 7, “Functions — Provides descriptions of the functions

Alphabetical List” available in the product’s command line
interface.

Online Help

The following online help is available:

¢ Online help in the MATLAB Help browser. Click the Filter Design HDL
Coder product link in the browser’s Contents pane.

® Context-sensitive “What’s This?” help for items that appear in the Filter
Design HDL Coder GUI. Click a GUI Help button or right-click on a GUI
item or within a specific frame in a GUI dialog to display help on that
dialog, item, or frame. For more information on using the context-sensitive
help, see “Using “What’s This?” Context-Sensitive Help” on page 1-11.

e M-help for the command line interface functions generatehdl, generatetb,
andgeneratetbstimulus is accessible with the MATLAB doc and help
commands. For example

doc generatehdl
help generatehdl

Using “What's This?” Context-Sensitive Help

“What’s This?” context-sensitive help topic is available for each dialog, pane,
and option in the Filter Design HDL Coder GUI. Use the “What’s This?” help
as needed while using the GUI to configure options that control the contents
and style of the generated HDL code and test bench.

To use the “What’s This?” help, do the following:

1 Place your cursor over the label or control for an option or in the
background for a pane or dialog.

1-11

1 Getting Started

2 Right-click. A What’s This? button appears. The following display shows
the What’s This? button appearing after a right-click on the Name option
in the HDL filter pane of the Generate HDL dialog.

. Generate HDL (Direct-Form FIR, order = 5

HOL fitter
Fitter target language: I WHOL j
Tame: |fi|ter

Target directory: Ihdlsrc

3 Click What’s This? The Filter Design HDL Coder opens context-sensitive
help that describes the option, pane, or dialog.

Demos and Tutorials

The Filter Design HDL Coder provides demos and tutorials to help you get
started. The demos give you a quick view of the product’s capabilities and
examples of how you might apply the product. You can run them with limited
product exposure.

The tutorials provide procedural instruction on how to apply product features.
The following topics, in Chapter 2, “Tutorials — Generating HDL Code for
Filters”, guide you through three tutorials:

¢ “Basic FIR Filter Tutorial” on page 2-3

e “Optimized FIR Filter Tutorial” on page 2-23

e “TIR Filter Tutorial” on page 2-43

1-12

Applying the Filter Design HDL Coder to the Hardware Design Process

Applying the Filter Design HDL Coder to the Hardware
Design Process
The basic workflow for applying the Filter Design HDL Coder to the hardware
design process involves the following steps:
1 Design a filter with the Signal Processing or Filter Design Toolbox.
2 Quantize the filter with the Filter Design Toolbox.

3 Review the property settings that the Filter Design HDL Coder applies
to generated HDL code by default.

4 Adjust property settings to customize the generated HDL code, as
necessary.

5 Generate the filter and test bench code.
6 Consider and, if appropriate, apply optimization options.

7 Test the generated code in a simulation.

The following figure shows these steps in a flow diagram.

1-13

1 Getting Started

1-14

Design filter

Quantized?

Quantize filter

Set HDL

properties

HDL

property
defzults
OoK?2

Yes

Generate HDL
»| code for filter and

A

test bench

Set optimization
properties

No

Simulate

Tutorials — Generating
HDL Code for Filters

This chapter guides you through the basic steps for generating and testing
HDL code for a few filter designs. Topics include the following:

“Creating a Directory for Your
Tutorial Files” (p. 2-2)

“Basic FIR Filter Tutorial” (p. 2-3)

“Optimized FIR Filter Tutorial” (p.

2-23)

“IIR Filter Tutorial” (p. 2-43)

Suggests that you create a directory
to store files generated as you
complete the tutorials presented in
this chapter

Guides you through the steps

for designing a basic FIR filter,
generating VHDL code for the filter,
and verifying the VHDL code with a
generated test bench

Guides you through the steps for
designing an optimized FIR filter,
generating Verilog code for the filter,
and verifying the Verilog code with a
generated test bench

Guides you through the steps for
designing an IIR filter, generating
VHDL code for the filter, and
verifying the VHDL code with a
generated test bench

2 Tutorials — Generating HDL Code for Filters

2-2

Creating a Directory for Your Tutorial Files

Set up a writable working directory outside the scope of your MATLAB
installation area to store files that will be generated as you complete your
Filter Design HDL Coder tutorial work. The tutorial instructions assume that
you create the directory hd1filter tutorials on drive D.

Basic FIR Filter Tutorial

Basic FIR Filter Tutorial

This section guides you through the steps for designing a basic quantized
discrete-time FIR filter, generating VHDL code for the filter, and verifying
the VHDL code with a generated test bench. The procedure is presented in
the following topics:

“Designing a Basic FIR Filter” on page 2-3
“Quantizing the Basic FIR Filter” on page 2-5

“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8

“Getting Familiar with the Basic FIR Filter’s Generated VHDL Code”
on page 2-15

“Verifying the Basic FIR Filter’s Generated VHDL Code” on page 2-16

Designing a Basic FIR Filter

One way of designing a filter in the MATLAB environment is to use the
FDATool. This section guides you through the procedure of designing and
creating a filter for a basic FIR filter. These instructions assume you are
familiar with the MATLAB user interface and the FDATool.

1
2

Start MATLAB.

Set your MATLAB current directory to the directory you created in
“Creating a Directory for Your Tutorial Files” on page 2-2.

Start the FDATool by entering the fdatool command in the MATLAB
Command Window. MATLAB displays the Filter Design & Analysis
Tool dialog.

2-3

2 Tutorials — Generating HDL Code for Filters

. Filter Design & Analysis Tool - [untitled.fda] . A =10 x|

File Edit Analysis Targets Wiew Window Help

DEHER| >~ | 220X DR MHNMH2 20 BLORE|W

— Current Filter Information _— _ Fitter Specifications
#hag. (dE)
Structure: Direct-Faorm FIR | _L
Oreler: S0
o+ A

Sectionz: 1 B

Stable: SfES T

Source: Designed ’Ttop

S I 1 o
Save . HVE HE .. | 0 F F Fe/o i (HZ)
Recall saved .. | B oD
Response Type FiterOrder_ Freguency Specificstions _Magnitude Specifications
o ILDWpass d " Specify order: Im Urits: IHz vI Lrits: IdB vI
=,
= = |Highpass -
v P Eli - J & MinitnLim arder Fs: |4SDDD - I1—
andpass [Eed

o 4 2
{~ Bandstop _ Optianz Fpass IQBDD
Aztop IBD

" |pitferentistar | || pensity Factor: [20 Fstop [12000

| Design Method

IR IBuﬂerWDr‘th 'I
{* FIR IEquirippIe 'I

o

[De=ign Filter |

|Read\,r

4 In the Filter Design & Analysis Tool dialog, check that the following
filter options are set:

Option Value
Response Type Lowpass
Design Method FIR Equiripple

2-4

Basic FIR Filter Tutorial

Option Value
Filter Order Minimum order (50)
Options Density Factor: 20
Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000
Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the FDATool creates
for you. If you do not need to make any changes and Design Filter is
greyed out, you are done and can skip to “Quantizing the Basic FIR Filter”
on page 2-5.

5 If you modified any of the options listed in step 4, click Design Filter. The
FDATool creates a filter for the specified design and displays the following
message in the FDATool status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the
FDATool and Filter Design Toolbox documentation.

Quantizing the Basic FIR Filter

You should quantize filters for HDL code generation. To quantize your filter,

1 Open the basic FIR filter design you created in “Designing a Basic FIR
Filter” on page 2-3 if it is not already open.

2 Click the Set quantization parameters icon in the left-side tool
bar. The FDATool displays a Filter arithmetic menu in the bottom half
of its dialog.

2-5

2 Tutorials — Generating HDL Code for Filters

. Filter Design & Analysis Tool - [untitled.fda]

File Edit Analysis Targets Wiew Window Help

Bl P] 5

DEHER| > | 220X DEMNHNMH#2 20 BLORE|W

— Current Fiter Information

_Magnitude Responze (dBE)

booocooofloooooofjoocooas]

50
4]
Structure: Direct-Form FIR @
Order: a0 @
G B
Sections: 1 =
Stable: SfES E
Source: Designed -0
=160
Save ... Baveds . | 0
Recall saved .. |

- - - - -

Frequency [kHz)

Fitter arithrnetic: IDoubIe-precision flosting-point d

L]
LA

]
ot

&

[l

There are ho additional settings for Double-precizion floating-point arthmetic.

|Cumputin_q Fesponse ... done

3 Select Fixed-point from the Filter arithmetic menu. The FDATool
displays the first of three tabbed panels of quantization parameters across
the bottom half of its dialog.

2-6

Basic FIR Filter Tutorial

. Filter Design & Analysis Tool - [untitled.fda *]
File Edit Analysis Targets Wiew Window Help

Bl P] 5

DEHER| > | 220X DEMNHNMH#2 20 BLORE|(W

— Current Filter Infarmation — _ Magnitude Response (dB)

50 T

[} :

Structure: Direct-Form FIR) .
L [

Oreler: S0 4 0

Sectionz: 1 = :
Stable: Yes E o -E -------------

Source: Designed (gquantized :
gned (o) - A

200 |

Save . | Bavess . | 0 5

Recall saved .. |

Frequency [kHz)

Filter arithmetic:

Coefficierts | InputiOut

Murmerator word length: |1 5] [Best-precision fraction lenogths
w[es
(& Mumeratar frac, [enoth: |1 5
=
(" Mumerstor Fande (+57 |1

B

put | Filter Interrals |

[~ Use unsigned represertation

[~ Scale the numerator coefficients to fully
utilize the entire dyhamic range

Apply |

|Cumputin_q Fesponse ... done

You use the quantization options to test the effects of various settings with
a goal of optimizing the quantized filter’s performance and accuracy.

4 Set the quantization parameters as follows:

2 Tutorials — Generating HDL Code for Filters

Tab Parameter Setting

Coefficients Numerator word length 16
Best-precision fraction lengths Selected
Use unsigned representation Cleared

Scale the numerator coefficients to fully Cleared
utilize the entire dynamic range

Input/Output Input word length 16
Input fraction length 15
Output word length 16
Avoid overflow Selected
Filter Internals Round towards Floor
Overflow mode Saturate
Product mode Full
precision
Accum. mode Keep MSB
Accum. word length 40
Cast signals before accum. Selected

5 Click Apply.

For more information on quantizing filters, see the FDATool and Filter Design
Toolbox documentation.

Configuring and Generating the Basic FIR Filter’s

VHDL Code

After you quantize your filter, you are ready to use the Filter Design HDL
Coder to configure and generate the filter’s VHDL code. This section guides
you through the procedure for starting the Filter Design HDL Coder GUI,
setting some options, and generating the VHDL code and a test bench for the
basic FIR filter you designed and quantized in “Designing a Basic FIR Filter”
on page 2-3 and “Quantizing the Basic FIR Filter” on page 2-5.

2-8

Basic FIR Filter Tutorial

1 Start the Filter Design HDL Coder by clicking Targets->Generate HDL
in the FDATool dialog. The FDATool displays the Filter Design HDL Coder

dialog.

=) Generate HDL {Direct-Form FIR, order = 50)

__HDL fitter

=101]

Filter target language: I “WHOL

Marme: [fiter

Target directory: |halsre

Reset type: I Azyhchranous j

Coeff mutipliers: IMunipner |
[~ Optimize for HOL

More Cptions |

Reset azserted level: IAcﬂve_high - I
FIR: adcler style: ILinear h I

[~ Add pipeline registers

__Test hench types

Manes [filter_th
¥ VHOL file
[~ werilog file

[~ ModelSim da file

Test Bench Options . I

[+ Impulze response

[Step response

¥ Ramp response

¥ Chirp response

[+ \White noise response

[~ User defined response

QK I Cancell

Help I Apply I

2 Find the Filter Design HDL Coder online help. Use the help to learn about
product details or to get answers to questions as you work with the designer.

a In the MATLAB window, click the Help icon

?

in the toolbar or

click Help->Full Product Family Help.

b In the Help browser’s Contents pane, select Filter Design HDL

Coder.

¢ Minimize the Help browser.

2-9

2 Tutorials — Generating HDL Code for Filters

2-10

Click the Help button. The FDATool displays context-sensitive help for the
dialog. As necessary, use the Help button on the other Filter Design HDL
Coder dialogs for context-sensitive help on those dialog views.

Close the Help window.

5 Place your cursor over the Name label or text box in the HDL filter pane

of the Generate HDL dialog and right-click. A What’s This? button
appears.

. Generate HDL (Direct-Form FIR, order = 5

HOL fitter
Fitter target language: I WHOL j
Tame: |fi|ter

Target directory: Ihdlsrc

Click What’s This? The Filter Design HDL Coder opens context-sensitive
help that describes the Name option. Use the context-sensitive help as
needed while using the GUI to configure options that control the contents
and style of the generated HDL code and test bench. A help topic is
available for each option and pane.

In the Name text box of the HDL filter pane, replace the default name
with basicfir. This option names the VHDL entity and the file that is
to contain the filter’s VHDL code.

In the Name text box of the Test bench types pane, replace the default
name with basicfir_tb. This option names the generated test bench file.

Click More Options. The Filter Design HDL Coder displays an HDL
Options dialog.

Basic FIR Filter Tutorial

) HDL Dptions . =100 =]

General | Ports | Ackvanced |

Commment in header: |

“etilog file extension: Iv— WHOL file extension: wvhd

Coetficient narme: W Package postfix _pkg

Entity conflict postfiz: W [~ Split entity and architecture

Reserved word postfiz: I_rsvd— Spilit eftity. file postfix: W
Clocked process postfix: IW Salit arch. file postiiz: I_arch—

Ok I Cancell Help I Applyl

10 In the Comment in header text box, type Tutorial - Basic FIR
Filter and then click Apply. The Filter Design HDL Coder adds the
comment to the end of the header comment block in each generated file.

11 Click the Ports tab. The Ports pane appears.

J HDL Options e I [|

General | Forts | Advanced

It port: [fitter _in (e et ik

Clock enahble port: Iclk_enable
Inpiut cata type: I std_logic_vectar j

Rezet input pott: Ireset
Output port; [fitter_out

¥ Acd input register

Output data type: | Same as Input data type - | o Add oulput register

Ok I Cancell Help I Applyl

12 Change the names of the input and output ports. Replace filter in with
data_in and filter_out with data_out.

2-11

2 Tutorials — Generating HDL Code for Filters

13 Clear the check box for the Add input register option. The Ports tab
should now look like the following.

J. HDL Dptions] 2| =10 x|

Generall F‘Drtsl Advanced

Input por: |data_in (e (AT Flk

Clock erahble port: Ic:lk_enable
Input data type: Is{d_logic_vectnr d

Reszet input port: Ireset
Cutput part: |data_out

Output data type: ISame as Input data type j [# dd output register

Ok I Cancell Help I Applyl

14 Click Apply and then OK to register your changes and close the HDL
Options dialog.

15 Click Test Bench Options. The Filter Design HDL Coder displays a
Test Bench Options dialog.

2-12

Basic FIR Filter Tutorial

J. Test Bench Dptions BT [] 24

¥ Force clock enable

Clock enahle value: I.i\.dive-high - I

[Force clock

Clock high time (hs): |5
Clock low time (ns): |5

[Force reset

Reset value: I.ﬂ.ctive-high - I
Hald Tirne (niz): |2

Errar margin (hits): I
Sirnulatar flags: I

ok | cancel| Hep | feelv |

You use this dialog to customize the generated test bench.
16 For this tutorial, apply the default settings by clicking OK.

17 In the Generate HDL dialog, click Apply or OK to start the code
generation process. OK closes the dialog.

The Filter Design HDL Coder displays the following messages in the
MATLAB Command Window as it generates the filter and test bench
VHDL files:

Starting VHDL code generation process for filter: basicfir
Generating basicfir.vhd file in: hdlsrc

Starting generation of basicfir VHDL entity

Starting generation of basicfir VHDL architecture

Successful completion of VHDL code generation process for
filter: basicfir

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.
Generating VHDL file basicfir_tb.vhd in: hdlsrc

Done generating VHDL test bench.

2-13

2 Tutorials — Generating HDL Code for Filters

As the messages indicate, the Filter Design HDL Coder creates the
directory hdlsrc under your current working directory and places the files
basicfir.vhd and basicfir_tb.vhd in that directory.

The generated VHDL code has the following characteristics:
e VHDL entity named basicfir.

¢ Registers that use asynchronous resets when the reset signal is active
high (1).

¢ Ports have the following names:

VHDL Port Name
Input data_in
Output data_out
Clock input clk

Clock enable input clk_enable
Reset input reset

¢ An extra register for handling filter output.

¢ (Clock input, clock enable input and reset ports are of type STD_LOGIC
and data input and output ports are of type STD_LOGIC VECTOR.

¢ (Coefficients are named coeffn, where n is the coefficient number,
starting with 1.

® Type safe representation is used when zeros are concatenated: '0' & '0'...

* Registers are generated with the statement ELSIF clk'event AND
clk="1" THEN rather than with the rising_edge function.

¢ The postfix string process is appended to process names.
The generated test bench:

¢ Is a portable VHDL file.

* Forces clock, clock enable, and reset input signals.

¢ Forces the clock enable input signal to active high.

2-14

Basic FIR Filter Tutorial

Drives the clock input signal high (1) for 5 nanoseconds and low (0)
for 5 nanoseconds.

Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.

Applies a hold time of 2 nanoseconds to data input signals.

¢ Applies impulse, step, ramp, chirp, and white noise stimulus types.

Getting Familiar with the Basic FIR Filter’s Generated

VHDL Code

Get familiar with the filter’s generated VHDL code by opening and browsing
through the file basicfir.vhd in an ASCII or HDL simulator editor.

1
2

Open the generated VHDL filter file basicfir.vhd.

Search for basicfir. This line identifies the VHDL module, using the
string you specified for the Name option in the HDL filter pane. See
step 5 in “Configuring and Generating the Basic FIR Filter’s VHDL Code”
on page 2-8.

Search for Tutorial. This is where the Filter Design HDL Coder places
the text you entered for the Comment in header option. See step 10 in
“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8.

Search for HDL Code. This section lists the Filter Design HDL Coder
options you modified in “Configuring and Generating the FIR Filter’s
Optimized Verilog Code” on page 2-28.

Search for Filter Settings. This section describes the filter design and
quantization settings as you specified in “Designing a Basic FIR Filter” on
page 2-3 and “Quantizing the Basic FIR Filter” on page 2-5.

Search for ENTITY. This line names the VHDL entity, using the string
you specified for the Name option in the HDL filter pane. See step 5 in
“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8.

Search for PORT. This PORT declaration defines the filter’s clock, clock
enable, reset, and data input and output ports. The ports for clock, clock
enable, and reset signals are named with default strings. The ports for data
input and output are named with the strings you specified for the Input
port and Output port options on the Ports tab of the HDL Options

2-15

2 Tutorials — Generating HDL Code for Filters

2-16

dialog. See step 12 in “Configuring and Generating the Basic FIR Filter’s
VHDL Code” on page 2-8.

8 Search for Constants. This is where the coefficients are defined. They are
named using the default naming scheme,coeffn, where n is the coefficient
number, starting with 1.

9 Search for Signals. This is where the filter’s signals are defined.

10 Search for process. The PROCESS block name Delay Pipeline process
includes the default PROCESS block postfix string process.

11 Search for IF reset. This is where the reset signal is asserted. The
default, active high (1), was specified. Also note that the PROCESS block
applies the default asynchronous reset style when generating VHDL code
for registers.

12 Search for ELSIF. This is where the VHDL code checks for rising edges
when the filter operates on registers. The default ELSIF clk'event
statement is used instead of the optional rising_edge function.

13 Search for Output_Register. This is where filter output is written to
an output register. The Filter Design HDL Coder generates the code for
this register by default. In step 13 in “Configuring and Generating the
Basic FIR Filter’s VHDL Code” on page 2-8, you cleared the Add input
register option, but left the Add output register selected. Also note that
the PROCESS block name Output_Register process includes the default
PROCESS block postfix string process.

14 Search for data_out. This is where the filter writes its output data.

Verifying the Basic FIR Filter’s Generated VHDL Code

This section explains how to verify the basic FIR filter’s generated VHDL code
with the generated VHDL test bench. Although this tutorial uses ModelSim
as the tool for compiling and simulating the VHDL code, you can use any
VHDL simulation tool package.

To verify the filter code, complete the following steps:

1 Start your simulator. When you start ModelSim, a screen display similar to
the following appears.

Basic FIR Filter Tutorial

[1ModelSim SE PLUS 5.7a _ B] 53
File Edit ‘iew Compile Simulate Tools Window Help

“Wiorkspace x|

I arme I Type I Fath ModelSirs | —
[Il vital2000 Library $MODEL_TE

&[] ie=e Librany $MODEL_TE

_[Il miodelzim_lib Libramy $MODEL_TE

=[] =t Librany $MODEL_TE

_[Il zbd_developerzkit Libramy $MODEL_TE

M e | ik SRAMMCI TC d

+| | i

Library 3

|=:NU Design Loaded= |

2 Set the current directory to the directory that contains your generated
VHDL files. For example:

cd d:/hdlfilter_tutorials/hdlsrc
3 If necessary, create a design library to store the compiled VHDL entities,

packages, architectures, and configurations. In ModelSim, you can create a
design library with the vlib command.

vlib work

4 Compile the generated filter and test bench VHDL files. In ModelSim, you
compile VHDL code with the vcom command. The following ModelSim
commands compile the filter and filter test bench VHDL code.

vcom basicfir.vhd
vcom basicfir_tb.vhd

The following screen display shows this command sequence and
informational messages displayed during compilation.

2-17

2 Tutorials — Generating HDL Code for Filters

2-18

[1ModelSim SE PLUS 5.7a N] 53
File Edit Wiew Compile Simulabe Tools Window Help
|zmR || snam
“Wiorkspace x|
Marne | Type | Path kodelSime weom basicfin whd d
M work Libramy D Awork Adds # Model Technology ModelSim SE voom 5.7a Compil
. . er 200212 Jan 32003
=9 vits[2000 Librsty $MODEL_TE | kg) oot package standard
_[Il ieee Libramy $MODEL_TE [|# - Loading pack age std_lagic_1164
L medelsim_lib Libiary $MODEL_TE E - lﬁnadlr_?_g paclta_;agbe nynfw_enc_std
. - Campiling entity basickir
m std _ L?blary $MODEL_TE # - Compiling architecture it of basicfi
[Il std_developerskit Library FMODEL_TE ModelSims veom basichir th.vhd
J]l ynopsys Lfb'a[-” SMODEL_TE | ot el Technalogy ModelSim SE voom 5. 7a Compil
M verilog Library FMODEL_TE er 2002.12 Jan 32003
- Loading package standard
- Loading package std_logic_1164
- Loading package numeric_ztd
-- Compiling entity bazicfir_tb
- Compiling architecture test of basicfir_th
‘ I I _’I # - Loading entity basicfir
Library MadelSim | z

|=:NU Design Loaded=

5 Load the test bench for simulation. The procedure for doing this varies
depending on the simulator you are using. In ModelSim, you load the test
bench for simulation with the vsim command. For example:

vsim work.basicfir_tb

The following ModelSim display shows the results of loading
work.basicfir_tb with the vsim command.

Basic FIR Filter Tutorial

[1ModelSim SE PLUS 5.7a B [55
File Edit Wiew Compile Simulabe Tools Window Help
[eme||camgm||EF mw-sEmE s e

Wiorkspace x|

Instance todelSim: v work. bazicfir_th d

Bl . basichir basichilt]

B rurnenic_std

B standard standard

< J

numeric_std Packac
B std_logic 1164 std_logic_...

Packag
Packac

2

waim work, bazicfir_th

164[body)

[body]
Loading work. bazsicfir_tbltest)
Loading wark. basicFir(rt]

Library | zim | Files

WSIM 113 |

Loading D /applications/ModelSimAwin32/_ztd standard
Loading D: /applicationz/ModelSimAwind2/ . feee. std_logic_1

Loading D: /applicationz/ModelSimAwind2/ .. feee. numernic_std

:

|N0w: Ons Delta: 0

|sim:fbasicﬂr_tb

6 Open a display window for monitoring the simulation as the test bench
runs. For example, in ModelSim, you can use the following command
to open a wave window to view the results of the simulation as HDL

waveforms:

add wave *

The following Wave window displays.

2-19

2 Tutorials — Generating HDL Code for Filters

==t wave - default -10] =l
File Edit View Insert Format Tools Wwindow

SEHS sP@M LK (N QAR FOEAEBE
I

=

i
B
P

7 To start running the simulation, issue the appropriate command for your

simulator. For example, in ModelSim, you can start a simulation with the
run command.

|E|nstu1us |

The following ModelSim display shows the run -all command being used
to start a simulation.

2-20

Basic FIR Filter Tutorial

[1ModelSim SE PLUS 5.7a N] 53

File Edit Wiew Compile Simulabe Tools Window Help

|JD”EH$1’ 5@@“ 1003 EL L EE | 8 B
“Wiorkspace x|
|hstance | Design Unit | Del ||# Loading D:/applications/ModelSimAwin32/.. fieee. numer j
— — ic_std(badw)
bazictir_th basicfir_th(t... A # Loading work.basicfir_tb(test)
B v _basicfir basicfiftl] Arc| ||# Loading work. basichinr)

B rumeric_std rumeric_std Pa) || Y5IM 1B add wave ®
B std logic 1164 std_logic_... Pa [[WSIM 17> n-al

W standard standard Pail |[# = Failure: == Test Complete, ==
Time: 34322 niz teration: 0 Process: /basichir_th/dat
«| | _'I a_in_gen File; basicfir_th.vhd J
Break at bazicfir_tb.vhd line 7027
Library | zim | Files d

|N0w: 34322 ns Delta: D |sim:fbasicﬂr_th o

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. You must determine whether the results are expected based on
the customizations you specified when generating the filter VHDL code.

Note The failure message that appears in the preceding display is not
flagging an error. If the message includes the string Test Complete, the
test bench has successfully run to completion. The Failure part of the
message is tied to the mechanism the Filter Design HDL Coder uses to
end the simulation.

The following Wave window shows the simulation results as HDL
waveforms.

2-21

2 Tutorials — Generating HDL Code for Filters

==+ wave - default

=10l x|
File Edit View Insert Format Tools Wwindow

SEHS sP@M LK (N QAR FOEAEBE
I

AR AR AAE A A1 AR L —
AR AN A AN AR AR LAY AT T AR AR AR AR A v

KLy

| 33372 ns to 34372 ns |

i
|
P

2-22

Optimized FIR Filter Tutorial

Optimized FIR Filter Tutorial

This section guides you through the steps for designing an optimized
quantized discrete-time FIR filter, generating Verilog code for the filter, and
verifying the Verilog code with a generated test bench. The procedure is
presented in the following topics:

“Designing the FIR Filter” on page 2-23
“Quantizing the FIR Filter” on page 2-25

“Configuring and Generating the FIR Filter’s Optimized Verilog Code”
on page 2-28

“Getting Familiar with the FIR Filter’s Optimized Generated Verilog
Code” on page 2-35

“Verifying the FIR Filter’s Optimized Generated Verilog Code” on page 2-37

Designing the FIR Filter

One way of designing a filter in the MATLAB environment is to use the
FDATool. This section guides you through the procedure of designing and
creating a filter for an FIR filter to which you will apply VHDL optimizations.
These instructions assume you are familiar with the MATLAB user interface
and the FDATool.

1
2

Start MATLAB.

Set your MATLAB current directory to the directory you created in
“Creating a Directory for Your Tutorial Files” on page 2-2.

Start the FDATool by entering the fdatool command in the MATLAB
Command Window. MATLAB displays the Filter Design & Analysis
Tool dialog.

2-23

2 Tutorials — Generating HDL Code for Filters

. Filter Design & Analysis Tool - [untitled.fda] . A =10 x|

File Edit Analysis Targets Wiew Window Help

DEHER| >~ | 220X DR MHNMH2 20 BLORE|W

— Current Filter Information _— _ Fitter Specifications
#hag. (dE)
Structure: Direct-Faorm FIR | _L
Oreler: S0
o+ A

Sectionz: 1 B

Stable: SfES T

Source: Designed ’Ttop

S I 1 o
Save . HVE HE .. | 0 F F Fe/o i (HZ)
Recall saved .. | B oD
Response Type FiterOrder_ Freguency Specificstions _Magnitude Specifications
o ILDWpass d " Specify order: Im Urits: IHz vI Lrits: IdB vI
=,
= = |Highpass -
v P Eli - J & MinitnLim arder Fs: |4SDDD - I1—
andpass [Eed

o 4 2
{~ Bandstop _ Optianz Fpass IQBDD
Aztop IBD

" |pitferentistar | || pensity Factor: [20 Fstop [12000

| Design Method

IR IBuﬂerWDr‘th 'I
{* FIR IEquirippIe 'I

o

[De=ign Filter |

|Read\,r

4 In the Filter Design & Analysis Tool dialog, set the following filter

options:
Option Value
Response Type Lowpass
Design Method FIR Equiripple

2-24

Optimized FIR Filter Tutorial

Option Value
Filter Order Minimum order (50)
Options Density Factor: 20
Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000
Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These are settings are for the default filter design that the FDATool creates
for you. If you do not need to make any changes and Design Filter is
greyed out, you are done and can skip to “Quantizing the FIR Filter” on
page 2-25.

5 Click Design Filter. The FDATool creates a filter for the specified design.
The following message appears in the FDATool status bar when the task
is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the
FDATool and Filter Design Toolbox documentation.

Quantizing the FIR Filter

You should quantize filters for HDL code generation. To quantize your filter,

1 Open the FIR filter design you created in if it is not already open.

oy
2 Click the Set quantization parameters icon in the left-side tool
bar. The FDATool displays a Filter arithmetic menu in the bottom half
of its dialog.

2-25

2 Tutorials — Generating HDL Code for Filters

. Filter Design & Analysis Tool - [untitled.fda]

File Edit Analysis Targets Wiew Window Help

Bl P] 5

DEHER| > | 220X DEMNHNMH#2 20 BLORE|W

— Current Fiter Information

_Magnitude Responze (dBE)

booocooofloooooofjoocooas]

50
4]
Structure: Direct-Form FIR @
Order: a0 @
G B
Sections: 1 =
Stable: SfES E
Source: Designed -0
=160
Save ... Baveds . | 0
Recall saved .. |

- - - - -

Frequency [kHz)

Fitter arithrnetic: IDoubIe-precision flosting-point d

L]
LA

]
ot

&

[l

There are ho additional settings for Double-precizion floating-point arthmetic.

|Cumputin_q Fesponse ... done

3 Select Fixed-point from the menu. The FDATool displays the first of
three tabbed panels of quantization parameters across the bottom half

of its dialog.

2-26

Optimized FIR Filter Tutorial

. Filter Design & Analysis Tool - [untitled.fda *]
File Edit Analysis Targets Wiew Window Help

Bl P] 5

DEHER| > | 220X DEMNHNMH#2 20 BLORE|(W

— Current Filter Infarmation — _ Magnitude Response (dB)

50 T

[} :

Structure: Direct-Form FIR) .
L [

Oreler: S0 4 0

Sectionz: 1 = :
Stable: Yes E o -E -------------

Source: Designed (gquantized :
gned (o) - A

200 |

Save . | Bavess . | 0 5

Recall saved .. |

Frequency [kHz)

Filter arithmetic:

Coefficierts | InputiOut

Murmerator word length: |1 5] [Best-precision fraction lenogths
w[es
(& Mumeratar frac, [enoth: |1 5
=
(" Mumerstor Fande (+57 |1

B

put | Filter Interrals |

[~ Use unsigned represertation

[~ Scale the numerator coefficients to fully
utilize the entire dyhamic range

Apply |

|Cumputin_q Fesponse ... done

You use the quantization options to test the effects of various settings with

a goal of optimizing the quantized filter’s performance and accuracy.

4 Set the quantization parameters as follows:

2-27

2 Tutorials — Generating HDL Code for Filters

Tab Parameter Setting

Coefficients Numerator word length 16
Best-precision fraction lengths Selected
Use unsigned representation Cleared

Scale the numerator coefficients to fully Cleared
utilize the entire dynamic range

Input/Output Input word length 16
Input fraction length 15
Output word length 16
Avoid overflow Selected
Filter Internals Round towards Floor
Overflow mode Saturate
Product mode Full
precision
Accum. mode Keep MSB
Accum. word length 40
Cast signals before accum. Set

5 Click Apply.

For more information on quantizing filters, see the FDATool and Filter Design
Toolbox documentation.

Configuring and Generating the FIR Filter’s Optimized
Verilog Code

After you quantize your filter, you are ready to use the Filter Design HDL
Coder to configure and generate the filter’s Verilog code. This section guides
you through the process for starting the Filter Design HDL Coder GUI,
setting some options, and generating the Verilog code and a test bench for the
FIR filter you designed and quantized in “Designing the FIR Filter” on page
2-23 and “Quantizing the FIR Filter” on page 2-25.

2-28

Optimized FIR Filter Tutorial

1 Start the Filter Design HDL Coder by clicking Targets->Generate HDL
in the FDATool dialog. The FDATool displays the Filter Design HDL Coder
dialog.

) Generate HDL {Direct-Form FIR, order = 50) ' o] A |
__ HOL fitter

Fitter taroet language: IVHDL d

Marme: [fiter

Target directory: |halsre

Reset type: I.i\.synchrnnnus d Rezet azserted level IActive-high = I
Coeff muttipliers: IMuItipIier d FIR aclder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

More Cptions |

[+ Impulze response

__Test hench types

Manes [filter_th
[Step response

[¥ SHOL file ¥ Ramp response
I verlog fle ¥ Chirp response

[+ \White noise response
™ ModelSim da file [~ User defined respanse

Test Bench Optiohs ... I |

Ok I Cancell Help I Appl\;l

2 Select Verilog for the Filter target language option, as shown in the
following dialog.

. Generate HDL {Direct-Form FIR, order = 50)

HOL fitter
Mamme: [ritter
Target directory: |hd|3rc

2-29

2 Tutorials — Generating HDL Code for Filters

2-30

In the Name text box of the HDL filter pane, replace the default name
with optfir. This option names the Verilog module and the file that is
to contain the filter’s Verilog code.

In the Name text box of the Test bench types pane, replace the default
name with optfir_tb. This option names the generated test bench file.

In the HDL filter pane, select the Optimize for HDL option. This option
is for generating HDL code that is optimized for performance or space
requirements. When this option is enabled, the Filter Design HDL Coder
makes tradeoffs concerning data types and might ignore your quantization
settings to achieve optimizations. When you use the option, keep in mind
that you do so at the cost of potential numeric differences between filter
results produced by MATLAB and the simulated results for the optimized
HDL code.

Select CSD for the Coeff multipliers option. This option optimizes
coefficient multiplier operations by instructing the coder to replace them
with additions of partial products produced by a canonic signed digit (CSD)
technique. This technique minimizes the number of addition operations
required for constant multiplication by representing binary numbers with
a minimum count of nonzero digits. This option also has the potential for
producing numeric differences between MATLAB filter results and the
simulated results for the optimized HDL code.

Select the Add pipeline registers option. For FIR filters, this option
optimizes final summation. The coder creates a final adder that performs
pair-wise addition on successive products and includes a stage of pipeline
registers after each level of the tree. When used for FIR filters, this option
also has the potential for producing numeric differences between MATLAB
filter results and the simulated results for the optimized HDL code.

Click More Options. The Filter Design HDL Coder displays an HDL
Options dialog.

Optimized FIR Filter Tutorial

J. HDL Options ' - 0]]

General | Ports | Ackvanced |

Commert in header: |

“erilog file extension: Iv— YHEOL file extension: whd

Coefficient name: W Package postfix: I—
Entity conflict postfix: W [~ Split extity arid architecture

Reserved woard postfix: I_rsvd— Split entity file postfix: I—
Clocked process postfix: Im Split arch. file postfix: I—

Ok I Cancell Help I Applyl

9 In the Comment in header text box, type Tutorial - Optimized FIR
Filter and then click Apply. The Filter Design HDL Coder adds the
comment to the end of the header comment block in each generated file.

10 Click the Ports tab. The Ports appears.

) HDL Dptions ' B] 3

Generall Por‘tsl Advanced

Clock part: Ik
Input ot [ritter_in p =

Clock enable port: Iclk_enable
Input date type: Iwire j

Rezet input pott: Irese‘t
Output part: [fitter_out

[Acd input register

Outet data type: i -
5 ATy Iere J [¥ Acid output register

ik, I Cancell Help I Appl\;l

11 Change the names of the input and output ports. Replace filter in with
data_in and filter_out with data_out.

2-31

2 Tutorials — Generating HDL Code for Filters

12 Clear the check box for the Add input register option. The Ports tab
should now look like the following.

) HDL Dptions . =100 =]

General | Portz | Ackvanced

Clack part: clk
Input port: |data_in p

Clock enahble port: Iclk_enable
It elzta type: I wrire d

Reszet input port: Ireset
Output port: |oiata_out

[~ Add input register

Gutaut data type: i -
o AL IWWE J [Acd output register

Ok I Cancell Help I Appl\;l

13 Click Apply and then OK to register your changes and close the HDL
Options dialog.

14 Click Test Bench Options. The Filter Design HDL Coder displays a
Test Bench Options dialog.

2-32

Optimized FIR Filter Tutorial

J. Test Bench Dptions BT [] 24

¥ Force clock enable

Clock enahle value: I.i\.dive-high - I

[Force clock

Clock high time (hs): |5
Clock low time (ns): |5

[Force reset

Reset value: I.ﬂ.ctive-high - I

Hald Tirne (niz): |2

Errar margin (hits): |4
Sirnulatar flags: I

ok | cancel| Hep | feelv |

Use this dialog to customize the generated test bench. Note that the Exrror
margin (bits) option is enabled. This is due to the use of optimization
options that potentially produce numeric results that differ from the results
of the original MATLAB filter. You can use this option to adjust the number
of least significant bits the test bench will ignore during comparisons
before generating a warning.

15 For this tutorial, apply the default settings by clicking OK.

16 In the Generate HDL dialog, click Apply or OK to start the code
generation process. OK closes the dialog.

The Filter Design HDL Coder displays the following messages in the
MATLAB Command Window as it generates the filter and test bench
Verilog files:

#it#
#it#
#it#
#it#
#it#
#it#
for

Starting Verilog code generation process for filter: optfir
Generating optfir.v file in: hdlsrc

Starting generation of optfir Verilog module

Starting generation of optfir Verilog module body

HDL latency is 6 samples

Successful completion of Verilog code generation process
filter: optfir

2-33

2 Tutorials — Generating HDL Code for Filters

Starting generation of Verilog Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.
Generating Verilog file optfir_tb.v in: hdlsrc

Done generating Verilog test bench.

As the messages indicate, the Filter Design HDL Coder creates the
directory hdlsrc under your current working directory and places the files
optfir.v and optfir_tb.v in that directory.

The generated Verilog code has the following characteristics:
¢ Verilog module named optfir.

® Registers that use asynchronous resets when the reset signal is active
high (1).

® Generated code that optimizes its use of data types and eliminates
redundant operations.

¢ (Coefficient multipliers optimized with the CSD technique.
¢ Final summations optimized using a pipelined technique.

¢ Ports that have the following names:

Verilog Port Name
Input data_in
Output data_out
Clock input clk

Clock enable input clk_enable
Reset input reset

¢ An extra register for handling filter output.

® Coefficients named coeffn, where n is the coefficient number, starting
with 1.

¢ Type safe representation is used when zeros are concatenated: '0' & '0'...

2-34

Optimized FIR Filter Tutorial

® The postfix string process is appended to sequential (begin) block
names.

The generated test bench:

¢ Is a portable Verilog file.

® Forces clock, clock enable, and reset input signals.
® Forces the clock enable input signal to active high.

¢ Drives the clock input signal high (1) for 5 nanoseconds and low (0)
for 5 nanoseconds.

* Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.
® Applies a hold time of 2 nanoseconds to data input signals.
¢ Applies an error margin of 4 bits.

¢ Applies impulse, step, ramp, chirp, and white noise stimulus types.

Getting Familiar with the FIR Filter’s Optimized
Generated Verilog Code

Get familiar with the filter’s optimized generated Verilog code by opening and
browsing through the file optfir.v in an ASCII or HDL simulator editor.

1
2

Open the generated Verilog filter file optcfir.v.

Search for optfir. This line identifies the Verilog module, using the string
you specified for the Name option in the HDL filter pane. See step 3 in
“Configuring and Generating the FIR Filter’s Optimized Verilog Code” on
page 2-28.

Search for Tutorial. This is where the Filter Design HDL Coder places
the text you entered for the Comment in header option. See step 9 in
“Configuring and Generating the FIR Filter’s Optimized Verilog Code” on
page 2-28.

Search for HDL Code. This section lists the Filter Design HDL Coder
options you modified in “Configuring and Generating the FIR Filter’s
Optimized Verilog Code” on page 2-28.

Search for Filter Settings. This section of the VHDL code describes the
filter design and quantization settings as you specified in “Designing the
FIR Filter” on page 2-23 and “Quantizing the FIR Filter” on page 2-25.

2-35

2 Tutorials — Generating HDL Code for Filters

2-36

6 Search for module. This line names the Verilog module, using the string
you specified for the Name option in the HDL filter pane. This line also
declares the list of ports, as defined by options on the Ports pane of the
HDL Options dialog. The ports for data input and output are named
with the strings you specified for the Input port and Output port
options on the Ports tab of the HDL Options dialog. See steps 3 and
11 in “Configuring and Generating the FIR Filter’s Optimized Verilog
Code” on page 2-28.

7 Search for input. This line and the four lines that follow, declare the
direction mode of each port.

8 Search for Constants. This is where the coefficients are defined. They are
named using the default naming scheme, coeffn, where n is the coefficient
number, starting with 1.

9 Search for Signals. This is where the filter’s signals are defined.

10 Search for sumvectori. This area of code declares the signals for
implementing an instance of a pipelined final adder. Signal declarations
for four additional pipelined final adders are also included. These signals
are used to implement the pipelined FIR adder style optimization specified
with the Add pipeline registers option. See step 7 in “Configuring and
Generating the FIR Filter’s Optimized Verilog Code” on page 2-28.

11 Search for process. The block name Delay Pipeline_process includes
the default block postfix string process.

12 Search for reset. This is where the reset signal is asserted. The default,
active high (1), was specified. Also note that the process applies the
default asynchronous reset style when generating code for registers.

13 Search for posedge. This Verilog code checks for rising edges when the
filter operates on registers.

14 Search for sumdelay pipeline_processi. This block implements the
pipeline register stage of the pipeline FIR adder style you specified in
step 7 of “Configuring and Generating the FIR Filter’s Optimized Verilog
Code” on page 2-28.

15 Search for output_register. This is where filter output is written to
an output register. The Filter Design HDL Coder generates the code for
this register by default. In step 12 in “Configuring and Generating the
FIR Filter’s Optimized Verilog Code” on page 2-28 , you cleared the Add

Optimized FIR Filter Tutorial

input register option, but left the Add output register selected. Also

note that the process name Output_Register_process includes the default
process postfix string process.

16 Search for data_out. This is where the filter writes its output data.

Verifying the FIR Filter’s Optimized Generated
Verilog Code

This section explains how to verify the FIR filter’s optimized generated
Verilog code with the generated Verilog test bench. Although this tutorial uses

ModelSim as the tool for compiling and simulating the Verilog code, you can
use any HDL simulation tool package.

To verify the filter code, complete the following steps:

1 Start your simulator. When you start ModelSim, a screen display similar to
the following appears.

TZ1ModelSim SE PLUS 5.7a : =101 x|
File Edit Yiew Compile Simulate Tools wWindow Help

|lzmld||engs

Workspace x|

M ame I Tupe I Path MadelSims | —
[Il wital2000 Library $MODEL_TE

&l ie=e Libray ~ $MODEL_TE

[Il madelzin_lib Library FMODEL_TE

=]l st Libray ~ $MODEL_TE

[Il std_developerskit Library FMODEL_TE

o A e [thAMMCI TC d

< | i

Library 3

|<N|:| Design Loaded= |

2 Set the current directory to the directory that contains your generated
Verilog files. For example:

cd hdlsrc

3 If necessary, create a design library to store the compiled Verilog modules.
In ModelSim, you can create a design library with the vlib command.

2-37

2 Tutorials — Generating HDL Code for Filters

vlib work

4 Compile the generated filter and test bench Verilog files. In ModelSim, you
compile Verilog code with the vlog command. The following ModelSim
commands compile the filter and filter test bench Verilog code.

vlog optfi
vlog optfi

r.vhd
r_tb.vhd

The following screen display shows this command sequence and
informational messages displayed during compilation.

[1ModelSim SE PLUS 5.7e

=10l]

File Edit Wiew Compile Simulate Tools Window Help
|zbe||ssas
Workspace x|
e I Tupe I Path ?ﬁ?dsegggghnology todelSim SE wlog 5. 7e Compiler 2003.0 d
[l work Library d:hdlfiter_tu | || # ~ Compiling module optfi
=[], vit=l2000 Library $MODEL_TE |8
i ise= Lirary SMODEL_TE| | |5 T ohlevel moduies
&[]} modetsim_lib Library $MODEL_TE| |4y e wlog optfc_thy
= e o Lbray SMODEL_TEL iy b de Technology ModelSim SE viog 5 7e Compiler 2003.0
_[Il std_developerskit Library $MODEL_TE® {|7 Jul & 2003
[l svropsps Library $MODEL_TE E - Compiling madule aptfi_th
M werilog Library $MODEL_TE #Top _Ievel miodules:
. | _’I # optfi_th
Library todelSim: -

|<N|:| Design Loaded=

5 Load the test bench for simulation. The procedure for doing this varies
depending on the simulator you are using. In ModelSim, you load the test
bench for simulation with the vsim command. For example:

vsim optfi

r_tb

The following ModelSim display shows the results of loading optfir_tb
with the vsim command.

2-38

Optimized FIR Filter Tutorial

[1ModelSim SE PLUS 5.7e B] 53

File Edit Wiew Compile Simulate Tools Window Help

|BR || cugH || wwelElEE B
Workspace x|
Instance X Ieign Lrit IDsigr & ﬁmggﬂtg 2EE:::_NJ b
S8 g ontfitb |_||:|tH_tI:| ""1""ju todelSim: wsim optfi_th
o abs real optf!r_tb Functic 1# vaim opifir_th
o clk_gen optfir_tb Stater # Loading work. optfir_th
R racab mze anie be Chatar T # Loading wark. optfir
< — | 2 vsivas |
Library | zim | Files =
|N|:uw: 0 ns Delta: 0 |5|m:fnptﬂr_tb o

6 Open a display window for monitoring the simulation as the test bench
runs. For example, in ModelSim, you can use the following command
to open a wave window to view the results of the simulation as HDL
waveforms:

add wave *

The following Wave window displays:

2-39

2 Tutorials — Generating HDL Code for Filters

2-40

wave - default

File Edit ‘iew Insert

Farmat Tools Wwindow

SEHS sP@M LK (N QAR FOEAEBE
‘ : b I

1] [| ||

|E|nstu1us

i
|
P

7 To start running the simulation, issue the appropriate command for your
simulator. For example, in ModelSim, you can start a simulation with the
run command.

The following ModelSim display shows the run -all command being used
to start a simulation.

Optimized FIR Filter Tutorial

[1ModelSim SE PLUS 5.7e N] 53

File Edit Wiew Compile Simulabe Tools Window Help

[eme||camgm||EF mw-sEmE s e
Wiorkspace x|
Instance IDesign Lnit IDesign MadelSim> vsim optfir_th k!
optfir_th aptfir_th b oduls # wsim optfir_tb
B ek il # Loading wark. optfir_th

& abs Dptfi'—tb Functio # Loading work. optfir
o clk_gen optf!r_tb Statenm YEIM 15> add wave *
o reset_gen optfi_th Staten VEIM 16 rn -al

& u_optfir optfir Module 1 %% Tt Complete,
Break at optfi_tb.w line 6383
< | s
Library | zim | Files YSIM 17 | j
|N0w: 34372 ns Delta D |sim:fuptﬁr_th p

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. You must determine whether the results are expected based on
the customizations you specified when generating the filter Verilog code.

The following Wave window shows the simulation results as HDL
waveforms.

2-41

Tutorials — Generating HDL Code for Filters

==+ wave - default

=10l x|
File Edit View Insert Format Tools Wwindow

i R KT nm| i QG R B EFiELERREE R 3

o

BERSOIVEEVHOVRAVYAVREVROVRODRRSERRDVOTREVRVE VIO RS ORRRURRORDRRSRRSIRR RV DTV
DERERRRRSURERPERCRRORVORRUIVORSVRDEROROREROERVRVREVROINORNDRSVREVROIBRORORBRRREVRL

I s

| 33422 ns to 34422 ns |

» -

2-42

IR Filter Tutorial

IR Filter Tutorial

This section guides you through the steps for designing a basic quantized
discrete-time IIR filter, generating VHDL code for the filter, and verifying
the VHDL code with a generated test bench. The procedure is presented in
the following topics:

® “Designing an IIR Filter” on page 2-43

* “Quantizing the IIR Filter” on page 2-45

® “Configuring and Generating the IIR Filter’s VHDL Code” on page 2-49

® “Getting Familiar with the IIR Filter’s Generated VHDL Code” on page 2-55
o “Verifying the IIR Filter’s Generated VHDL Code” on page 2-56

Designing an IR Filter

One way of designing a filter in the MATLAB environment is to use the
FDATool. This section guides you through the procedure of designing and
creating a filter for an IIR filter. These instructions assume you are familiar
with the MATLAB user interface and the FDATool.

1 Start MATLAB.

2 Set your MATLAB current directory to the directory you created in
“Creating a Directory for Your Tutorial Files” on page 2-2.

3 Start the FDATool by entering the fdatool command in the MATLAB
Command Window. MATLAB displays the Filter Design & Analysis
Tool dialog.

2-43

2 Tutorials — Generating HDL Code for Filters

. Filter Design & Analysis Tool - [untitled.fda] . A =10 x|

File Edit Analysis Targets Wiew Window Help

DEHER| >~ | 220X DR MHNMH2 20 BLORE|W

— Current Filter Information _— _ Fitter Specifications
#hag. (dE)
Structure: Direct-Faorm FIR | _L
Oreler: S0
o+ A

Sectionz: 1 B

Stable: SfES T

Source: Designed ’Ttop

S I 1 o
Save . HVE HE .. | 0 F F Fe/o i (HZ)
Recall saved .. | B oD
Response Type FiterOrder_ Freguency Specificstions _Magnitude Specifications
o ILDWpass d " Specify order: Im Urits: IHz vI Lrits: IdB vI
=,
= = |Highpass -
v P Eli - J & MinitnLim arder Fs: |4SDDD - I1—
andpass [Eed

o 4 2
{~ Bandstop _ Optianz Fpass IQBDD
Aztop IBD

" |pitferentistar | || pensity Factor: [20 Fstop [12000

| Design Method

IR IBuﬂerWDr‘th 'I
{* FIR IEquirippIe 'I

o

[De=ign Filter |

|Read\,r

4 In the Filter Design & Analysis Tool dialog, set the following filter

options:
Option Value
Response Type Highpass
Design Method IIR Butterworth

2-44

IR Filter Tutorial

Option Value

Filter Order 5

Frequency Specifications Units: Hz
Fs: 48000
Fc: 10800

5 Click Design Filter. The FDATool creates a filter for the specified design.
The following message appears in the FDATool status bar when the task
is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the
FDATool and Filter Design Toolbox documentation.

Quantizing the IR Filter

You should quantize filters for HDL code generation. To quantize your filter,
1 Open the IIR filter design you created in “Designing an IIR Filter” on
page 2-43 if it is not already open.

oy
2 Click the Set quantization parameters icon in the left-side tool
bar. The FDATool displays the Filter arithmetic menu in the bottom
half of its dialog.

2-45

2 Tutorials — Generating HDL Code for Filters

. Filter Design & Analysis Tool - [D:\hdlfilter_ktutorials®, . = |EI|5|
File Edit Analvsis Targets Wiew Window Help b
DS EER -~ (22X 0|ENHM# 20 BLORE W
—Current Fitter Information — Magnitude Responze (dB)
. ! . ! .
Structure; Direct-Form Ty | 8 e ccncoonnon L ecooocoomno 8 e ccncoonnon 0 ecoonnoad
Second-Order T i : i i
Lt T o 0 ; h i
Order: 5 4 0 i 0 i
Sections: 3 = A E Pt E T
Stahle: Yes E E i E i
Source: Designed e -i —————————————— :» ————————————— -i —————————————— :» ———————————
. i | i |
Save . | Baveas | 0 5 10 15 20
Recall zaved | Flequenty, itz

Filter arithrnetic: IDoubIe-precisinn flostingg-point j

[+
LAl

There are ho sdditional settings for Double-precision flosting-point arthmetic.

ol iy
il |

a2

|Ready.

3 Select Fixed-point from the menu. The FDATool displays the first of
three tabbed panels of its dialog.

2-46

IR Filter Tutorial

. Filter Design & Analysis Tool - [D:\hdlfilter_tutorialstiirfir.fda *]

File Edit

analysis Targets Wiew Window Help

=0l]

DEHESR >~ A#RoX DNEMNENM2 0 BLHORE W

— Current Fitter Information

Structure: Direct-Form I,

Second-Crder

[l HERR S
Cirder: a2
Sections: 3
Stable: Yes
Source: Designed (quantized)
Save . | Baveas |
Recall zaved |

— Magnitude Responze (dB)

100

hannitucke (cB)

(o]
o - - -
2
(=]

Frequency (kHz)

[+
LAl

Fiter arithmetic: B Ealallyd

Coefficient word length:

(v Mumerator frac, lenoth:

{ Mumerator range (+/-);

(= Denominator frac, lenoth

= Denaminator range (i)

|1 i [+ Best-precision fraction lengths

|1 5 s Scale Walues frac, length: |1 5
|1 { Scale Values range (+-1 |1

—
—

Coetficierts | InputiOutout | Fiter internats |

[~ Use unsigned represertation

=
Bl

Apply |

|Ready.

You use the quantization options to test the effects of various settings with
a goal of optimizing the quantized filter’s performance and accuracy.

4 (Click the Filter Internals tab and set Round towards to Floor and
Overflow Mode to Saturate.

5 Click Apply. The quantized filter appears as follows.

2-47

2 Tutorials — Generating HDL Code for Filters

2-48

. Filter Design & Analysis Tool - [untitled.Fda *]

File

Edit Analysis Targets Wiew W

indove Help

=0l]

DEHESR >~ AR0X DB MNEMH2 0 BLHORE N

— Current Fitter Information

Structure: Direct-Form I,
Second-Crder
[l HERR S

Cirder: a2

Sections: 3

Stable: Yes

Source: Designed (quantized)

Store . |
Edit/iewy stored fiters |

— Magnitude Responze (dB)

100 : :

0 : : : i

T H i

= 3 b
¥ :
= h
= 3
) :
= '

=500 } b } b

i I I I i

o 5 10 15 20

Frequency (kHz)

Filter arithnetic: IFixed-poir‘rt

Found tovwards: I Flaor

| Coetficierts | InputiOutput | Fiter internais |

]

Crverfloww Mode: ISaturate 'I

3]] |5

Product mode: IFuII precizion vl
Product wword length: |32

—
—

Murn . fraction length:

Dern, fraction lencth:

ACCUmm, mocde: IW

I"-lD—
|28—
|29—

[Cast signals before accum.

Accurm. word lengthe
Murn . fraction length:

Den. fraction length:

State wword length:

-

[~ Avwoid overtloyy

State fraction length:

e

f1E1 el

Apply |

For more information on quantizing filters, see the FDATool and Filter Design

Toolbox

documentation.

IR Filter Tutorial

Configuring and Generating the IIR Filter’s VHDL
Code

After you quantize your filter, you are ready to use the Filter Design HDL
Coder to configure and generate the filter’s VHDL code. This section guides
you through the procedure for starting the Filter Design HDL Coder GUI,
setting some options, and generating the VHDL code and a test bench for the
IIR filter you designed and quantized in “Designing an IIR Filter” on page
2-43 and “Quantizing the IIR Filter” on page 2-45

1 Start the Filter Design HDL Coder by clicking Targets->Generate HDL
in the FDATool dialog. The FDATool displays the Filter Design HDL Coder
dialog.

<) Generate HDL (Direct-Form FIR, order = 50) ! - |D|ﬂ
__HOL fitter
Fitter target language: IVHDL d
Matne: |firter
Target directory: |hallsre

Reset type: IAsynchrnnnus d Feset asserted level IActive-high = I
Coeff muttipliers: IMuItipIier d FIR: acider style: ILinear = I

[~ Cptirize for HOL [~ Add pipeline registers

More Cptions .. |

[Impulze response

__ Test bench types

Mame: [fitter_th
¥ Step response

[V wHDL file [Ramp response
I veriog fie [Chirp response

[¥ White noise response
I™ ModelSim da fils [~ User defined response

Test Bench Cptions ... I |

Ok I Cancell Help I Appl\;l

2 In the Name text box of the HDL filter pane, type iir. This option names
the VHDL entity and the file that is to contain the filter’s VHDL code.

2-49

2 Tutorials — Generating HDL Code for Filters

3 In the Name text box of the Test bench types pane, type iir_tb. This
option names the generated test bench file.

4 Click More Options. The Filter Design HDL Coder displays an HDL
Options dialog.

). HDL Dptions ' o =] =

General | Ports | Advanced |

Commerit in hesder: |

“etilog file extenszion: I_v WHOL file extension: whd
Coefficient name: Icoeff Package postfix: ko
Entity conflict postfix: I_er'rtity [~ Spiit ertity and architecture

Reserved ward postfiz: I_rsvd Salit ertity. file postfix: I_er'rtity
Clocked process postfix: IJJ['DCBSS St arch. file postfiz: I_arch

ok | concel| Hew | el |

5 In the Comment in header text box, type Tutorial - IIR Filter and
then click Apply. The Filter Design HDL Coder adds the comment to the
end of the header comment block in each generated file.

6 Click the Ports tab. The Ports pane appears.

2-50

IIR Filter Tutorial

A HDL Options

Generall F‘Drtsl Advanced

Input por:

Input data type:

Output port:

[fiter_in

Idd_logic_vectnr

=l

[ritter_out

Qutput cata type: ISame ag Input data type j

Clock port: clk

Clock erahble port: Ic:lk_enable
Reszet input port: Ireset

[¥ Acid input register

[Acd output register

(=

QK I Cancell

Hel I Agpaly I

7 Clear the check box for the Add output register option. The Ports tab

should now look like the following.

) HDL Options

Generall Por‘tsl Advanced

Input port:

Input data type:

Output port:

[ritter_in

Istd_logic_vectnr

|

[fitter_out

Clock poart: clk

Clock enable port: Iclk_enable
Rezet input pott: Irese‘t

Output data type: ISame a5 Input data type | I Addl outut register

=101]

Cancel I

Help I Apply

8 Click Apply.

9 Click the Advanced tab. The Advanced pane appears.

2-51

2 Tutorials — Generating HDL Code for Filters

J. HDL Options =100 =]

General | Parts | Advanced |

v Initialize real signals
Winirum overlap of scale values (bits) |3 ~ Y

[¥ Cast hefore sum
[~ Represent constant values by aggregates

[Uze Wetilog timescale directives

[~ Use 'rizing_edue' for registers
[¥ Inling %HOL configuration

Loap untallit
r B J [¥ Concatenste type safe zeros

Ok I Cancell Help I Applyl

10 Select the Use ’rising_edge’ for registers option. The Advanced pane
should now look like the following.

J HDL Dptions : =0 x|

General | Ports | Advanced |

v Initialize real signals
Winirmum averlap of scale values (bhits): |3 ~ Y

[¥ Cast hefore sum
[~ Represert constant values by aggregates

[Uze Wetilog timescale directives

[Lise 'rising_edge' tor registers

[¥ Inling %HOL configuration

Loap unrallin
r B g [¥ Concatenste type safe zeros

Ok I Cancell Help I Appl\;l

11 Click Apply to register your changes and then OK to close the dialog.

12 Click Test Bench Options. The Filter Design HDL Coder displays a
Test Bench Options dialog.

2-52

IR Filter Tutorial

J. Test Bench Dptions BT [] 24

¥ Force clock enable

Clock enahle value: I.i\.dive-high - I

[Force clock

Clock high time (hs): |5
Clock low time (ns): |5

[Force reset

Reset value: I.ﬂ.ctive-high - I
Hald Tirne (niz): |2

Errar margin (hits): I
Sirnulatar flags: I

ok | cancel| Hep | feelv |

You use this dialog to customize the generated test bench.
13 For this tutorial, apply the default settings by clicking OK.

14 In the Generate HDL dialog, click Apply or OK to start the code
generation process. OK closes the dialog.

The Filter Design HDL Coder displays the following messages in the
MATLAB Command Window as it generates the filter and test bench
VHDL files:

Starting VHDL code generation process for filter: iir

Generating iir.vhd file in: hdlsrc

Starting generation of iir VHDL entity

Starting generation of iir VHDL architecture

Second-order section, # 1

Second-order section, # 2

First-order section, # 3

Successful completion of VHDL code generation process for
filter: iir

Starting generation of VHDL Test Bench
Generating input stimulus

2-53

2 Tutorials — Generating HDL Code for Filters

Done generating input stimulus; length 2172 samples.
Generating VHDL file iir_tb.vhd in: hdlsrc
Done generating VHDL test bench.

As the messages indicate, the Filter Design HDL Coder creates the
directory hdlsrc under your current working directory and places the files
iir.vhd and iir_tb.vhd in that directory.

The generated VHDL code has the following characteristics:
e VHDL entity named iir.

® Registers that use asynchronous resets when the reset signal is active
high (1).

¢ Ports have the following default names:

VHDL Port Name
Input filter_in
Output filter out
Clock input clk

Clock enable input clk _enable
Reset input reset

¢ An extra register for handling filter input.

¢ Clock input, clock enable input and reset ports are of type STD_LOGIC
and data input and output ports are of typeSTD _LOGIC VECTOR.

¢ (Coefficients are named coeffn, where n is the coefficient number,
starting with 1.

¢ Type safe representation is used when zeros are concatenated: '0' & '0'...

® Registers are generated with the rising_edge function rather than the
statement ELSIF clk'event AND clk='1'" THEN.

¢ The postfix string process is appended to process names.
The generated test bench:
¢ Is a portable VHDL file.

2-54

IR Filter Tutorial

® Forces clock, clock enable, and reset input signals.
® Forces the clock enable input signal to active high.

¢ Drives the clock input signal high (1) for 5 nanoseconds and low (0)
for 5 nanoseconds.

® Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.
® Applies a hold time of 2 nanoseconds to data input signals.

® Applies step, ramp, and chirp stimulus types.

Getting Familiar with the IIR Filter’s Generated VHDL

Code

Get familiar with the filter’s generated VHDL code by opening and browsing
through the file iir.vhd in an ASCII or HDL simulator editor.

1
2

Open the generated VHDL filter file iir.vhd.

Search for iir. This line identifies the VHDL module, using the string
you specified for the Name option in the HDL filter pane. See step 2 in
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-49.

Search for Tutorial. This is where the Filter Design HDL Coder places
the text you entered for the Comment in header option. See step 5 in
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-49.

Search for HDL Code. This section lists the Filter Design HDL Coder
options you modified in“Configuring and Generating the IIR Filter’s VHDL
Code” on page 2-49.

Search for Filter Settings. This section of the VHDL code describes the
filter design and quantization settings as you specified in “Designing an
IIR Filter” on page 2-43 and “Quantizing the IIR Filter” on page 2-45.

Search for ENTITY. This line names the VHDL entity, using the string
you specified for the Name option in the HDL filter pane. See step 2 in
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-49.

Search for PORT. This PORT declaration defines the filter’s clock, clock
enable, reset, and data input and output ports. The ports for clock, clock
enable, reset, and data input and output signals are named with default
strings.

2-55

2 Tutorials — Generating HDL Code for Filters

2-56

8 Search for CONSTANT. This is where the coefficients are defined. They are
named using the default naming scheme, coeff_xm_sectionn, where x is a
or b, mis the coefficient number, and n is the section number.

9 Search for SIGNAL. This is where the filter’s signals are defined.

10 Search for input_reg process. The PROCESS block name
input_reg_process includes the default PROCESS block postfix string
_process. This is where filter input is read from an input register. The
Filter Design HDL Coder generates the code for this register by default.
In step 7 in “Configuring and Generating the Basic FIR Filter’s VHDL
Code” on page 2-8 , you cleared the Add output register option, but left
the Add input register selected.

11 Search for IF reset. This is where the reset signal is asserted. The
default, active high (1), was specified. Also note that the PROCESS block
applies the default asynchronous reset style when generating VHDL code
for registers.

12 Search for ELSIF. This is where the VHDL code checks for rising edges
when the filter operates on registers. The rising_edge function is used
as you specified in the Advanced pane of the HDL Options dialog. See
step 10 in “Configuring and Generating the IIR Filter’s VHDL Code” on
page 2-49.

13 Search for Section 1. This is where second-order section 1 data is filtered.
Similar sections of VHDL code apply to another second-order section and
a first-order section.

14 Search for filter_out. This is where the filter writes its output data.

Verifying the IIR Filter’s Generated VHDL Code

This sections explains how to verify the IIR filter’s generated VHDL code with
the generated VHDL test bench. Although this tutorial uses ModelSim as
the tool for compiling and simulating the VHDL code, you can use any HDL
simulation tool package.

To verify the filter code, complete the following steps:

1 Start your simulator. When you start ModelSim, a screen display similar to
the following appears.

IIR Filter Tutorial

[1ModelSim SE PLUS 5.7a _ B] 53
File Edit ‘iew Compile Simulate Tools Window Help

“Wiorkspace x|

I arme I Type I Fath ModelSirs | —
[Il vital2000 Library $MODEL_TE

&[] ie=e Librany $MODEL_TE

_[Il miodelzim_lib Libramy $MODEL_TE

=[] =t Librany $MODEL_TE

_[Il zbd_developerzkit Libramy $MODEL_TE

M e | ik SRAMMCI TC d

+| | i

Library 3

|=:NU Design Loaded= |

2 Set the current directory to the directory that contains your generated
VHDL files. For example:

cd hdlsrc

3 If necessary, create a design library to store the compiled VHDL entities,
packages, architectures, and configurations. In ModelSim, you can create a
design library with the vlib command.

vlib work

4 Compile the generated filter and test bench VHDL files. In ModelSim, you
compile VHDL code with the vcom command. The following ModelSim
commands compile the filter and filter test bench VHDL code.

vcom iir.vhd
vcom iir_tb.vhd

The following screen display shows this command sequence and
informational messages displayed during compilation.

2-57

2 Tutorials — Generating HDL Code for Filters

2-58

T=1ModelSim SE PLUS 5.7a =101 x|
File Edit View Compile Simulabe Tools wWindow Help
s |snae
Workspace x|
Marme I Type I Path ModelSim: woom iinvhd d
m vk Librany D: Awrk Al # Model Technology MadelSim SE veom 5.7a Compil
) . er 200212 Jan 32003
[l vitz2000 Libtary SMODEL_TE | | | o g package standard
_[Il ieee Libramy $MODEL_TE [|# - Loading pack age std_lagic_1164
L medelsim_lib Librany $MODEL_TE | || ¥ - Loading package numeric_std
1] std Ubray $MODEL_TE | || - kompling entiy ir
s _ orary - # - Compiling architecture rtl of ii
_[Il std_developerskit Library $MODEL_TE ModelSims weom it th.vhd
m syn.opsys L?brary SMODEL_TE | g bl Technology ModelSim SE voom 5.7a Compil
M verilog Libramy $MODEL_TE | ||er 200212 Jan 3 2003
- Loading package standard
- Loading package ztd_logic_1164
- Loading package numernic_ztd
- Compiling entity iir_tb
- Compiling architecture test of ir_th
-- Loading entity i
4 13
I | _I ModelSims |

Library

| Loading...

|<:ND Contexts

5 Load the test bench for simulation. The procedure for doing this varies

depending on the simulator you are using. In ModelSim, you load the test

bench for simulation with the vsim command. For example:

vsim work.iir_tb

The following ModelSim display shows the results of loading work.iir_ tb

with the vsim command:

IIR Filter Tutorial

[Z]Modelsim SE PLUS 5.7a B [59
File Edit Wiew Compile Simulabe Tools Window Help
EE e E R EE
Wiorkspace x|
Iristanice | Desian Unit |De: 2] || ModelSims wsim work iir_th Al

E—E jir_th jir_th(test) A
| iir(rtl) Arg

B rurnenic_std numeric_std Pac
B std_logic 1164 std_logic_... Pac

wesim workdir_th

Loading D /applications/ModelSimAwin32/_ztd standard

Loading D: /applicationz/ModelSimAwind2/ . feee. std_logic_1
164(bady)

Loading D: /applicationz/ModelSimAwind2/ .. feee. numernic_std
[body]

B standard standard Pad d # Loading work.iir_tb{test)
.| | _'I # Loading wark_iir[rt]] J
Library | sim [Files WSIM 115 | =l
|N0w: Ons Delta: 0 |5im:fiir_th o

Open a display window for monitoring the simulation as the test bench
runs. For example, in ModelSim, you can use the following command
to open a wave window to view the results of the simulation as HDL

waveforms:

add wave *

The following Wave window displays.

2-59

2 Tutorials — Generating HDL Code for Filters

=0l x|

File Edit View Insert Format Tools Wwindow

FEES % R R Xl (N QG @B EFELEIE 3

|
s

=

i
B
P

7 To start running the simulation, issue the appropriate command for your

simulator. For example, in ModelSim, you can start a simulation with the
run command.

|E|nstu1us |

The following ModelSim display shows the run -all command being used
to start a simulation.

2-60

IR Filter Tutorial

T]ModelSim SE PLUS 5.7e _ (ol x|

File Edit View Compile Simulabe Tools wWindow Help

|BR || S || wEEE B

Workspace x|
Inztance I Dezign Lnit I Dezign || W5IM 9 run-al d
B_E iir_th iir_thitest] Archite |87 Waming: HUMERIC_STD."=": metavalue detected, returmi
Wi it Archite |10 FALSE

-) # Time: Ong lteration: O Instance: Ai_tbAu_ii
W rumenc_std numernic_std Packac) | [# = wWarming MUMERIC_STD."=": metavalue detected, returmi
B std_logic 1164 std logic_.. Packac| ||ngFALSE

standard standard Packar

Time: Ong lteration: O Instance: Aic_tbAu_iir

= Wwharning: MUMERIC_STD."=": metavalue detectad, returni
ng FALSE

Time: Onz lteration: 0 Instance: Aic_tBdu_iir

= Failure: == Test Complete, ==

Time: 21752 ng lteration; 0 Process: Aic_tb/filker_in_gen Fil

e iir_tb.vhc!l]
«| I _'I # Break at iir_tb.vhd line 4547
Library | zir | Files WS 10 -
|N0w: 21,752 ns Delta: 0 |sim:fstandard

&)

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. You must determine whether the results are expected based on
the customizations you specified when generating the filter VHDL code.

Note

¢ The warning messages that note Time: 0 ns in the preceding display
are not errors and you can ignore them.

¢ The failure message that appears in the preceding display is not flagging
an error. If the message includes the string Test Complete, the test
bench has successfully run to completion. The Failure part of the
message is tied to the mechanism the Filter Design HDL Coder uses to
end the simulation.

The following wave window shows the simulation results as HDL
waveforms.

2-61

Tutorials — Generating HDL Code for Filters

2-62

==t wave - default -10] =l

File Edit View Insert Format Tools Wwindow

EEHE LR R X1 N QS @ FIELEIE 3
: o :

A DOn0000000000000_—
UL ERRERVOESVRVREVRCTROTRORSVRRPERCRROTVEINORNVRSVRVRDIBRNRRNORFERSERDERORBRD VREIRFVPRRORM

21752 ns
Cursor 1 Ons
4] T | K] =
| 20802 s to 21802 ns |

A |

i
B
P

Generating HDL Code for a
Filter Design

The Generate HDL dialog is a graphical user interface (GUI) plug-in tool
accessible from the Filter Design and Analysis Tool (FDATool) packaged with
the Signal Processing and Filter Design Toolboxes. Using the GUI, you can
quickly and easily generate HDL code and a test bench for a quantized filter
you design with the FDATool. Although this chapter focuses on explaining
how to use the Generate HDL dialog, a command line interface is also
available. For descriptions of available functions and the properties you can
specify in the command line, see Chapter 7, “Functions — Alphabetical
List” and Chapter 6, “Properties — Alphabetical List”. Topics covered in

this chapter include the following:

“Overview of Generating HDL Code
for a Filter Design” (p. 3-3)

“Opening the Generate HDL Dialog”
(p. 3-4)

“What Is Generated by Default?” (p.
3-9)

“What Are Your HDL
Requirements?” (p. 3-13)

“Setting the Target Language” (p.
3-18)

Provides an overview of the steps
involved with using the Generate
HDL dialog to generate HDL code
for a filter design

Explains how to open the Generate
HDL dialog

Describes what the Filter Design
HDL Coder generates when you
specify no customizations

Provides a checklist that helps you
determine whether you need to
specify generation customizations

Explains how to specify whether
VHDL or Verilog filter code is
generated

3 Generating HDL Code for a Filter Design

3-2

“Setting the Names and Location for
Generated HDL Files” (p. 3-19)

“Customizing Reset Specifications”
(p. 3-26)

“Customizing the HDL Code” (p.
3-29)

“Setting Optimizations” (p. 3-54)

“Customizing the Test Bench” (p.
3-61)

“Generating the HDL Code ” (p.
3-74)

Explains how to explicitly name and
specify the location for generated
HDL filter and test bench files

Explains how to customize the
names and location of generated files
and specifications for resets

Explains how to customize various
elements of generated HDL code

Explains how to optimize a filter’s
generated HDL code, even if the
resulting code might produce results
that differ from results of the original
MATLAB filter design

Explains how to specify a test bench
type, customize clock and reset
settings, and adjust the stimulus
response

Explains how to initiate HDL code
generation discusses the data type
conversions that occur during the
generation process

Overview of Generating HDL Code for a Filter Design

Overview of Generating HDL Code for a Filter Design

Consider the following process as you prepare to use the Generate HDL
dialog to generate VHDL code for your quantized filter:

Open the Generate HDL dialog.
Review what the Filter Design HDL Coder generates by default.

W N

Assess whether the default settings meet your application requirements.
If they do, skip to step 6.

H

Review the customization checklist available in “What Are Your HDL
Requirements?” on page 3-13 and identify required customizations.

(¢}

Modify the Generate HDL dialogs“Setting the Target Language” on page
3-18 to address your application requirements.

6 Generate the filter’s HDL code and test bench.

Open generate
E|DL dialog

v

Review
default output

Meets 152 Review customization
requirements? checklist
Modify dialog
settings

Generate HDL filter
code and test bench |«

3-3

3 Generating HDL Code for a Filter Design

Opening the Generate HDL Dialog

One way of customizing HDL properties and initiating the generation of
HDL code is to use the Generate HDL dialog, which is accessible from the
Filter Design and Analysis Tool (FDATool). To open the initial Generate
HDL dialog, do the following:

1 Open the FDATool by entering the fdatool command at the MATLAB
command prompt.

The FDATool displays its initial dialog.

Opening the Generate HDL Dialog

. Filter Design & Analysis Tool - [untitled.fda] A =10 x|
File Edit Analysis Targets Wiew Window Help
N8R~ | 220X 0N MNM2 0 BLEORE| W

—Current Filter Infarmation _Fitter Specifications

#hag. (dE)

Structure: Direct-Faorm FIR | _L

Oreler: S0 ol 5

Sectionz: 1 B

Stable: SfES T

Source: Designed ’ﬂ‘stop

1 1 o
S SEVE 82 .. 1
bl | 0 E Fui Fsiz 1 (Hz)
Recall saved .. | Pogi el
_Response Type __Fitter Crder _Freguency Specifications _Magnitude Specifications
o ILDWpass d " Specify order: Im Urits: IHz vI Lrits: IdB vI
=,
= = |Highpass -
v P Eli - J & MinitnLim arder Fs: |4SDDD - I1—
andpass [Eed
o 4 2
{~ Bandstop _ Optianz Fpass IQBDD
~ Aztop IBD
Differentistar Fis Density Factar: IQD

— | =] || pensity Factor Fstop [12000

o

| Design Method

IR IBuﬂerWDr‘th 'I
{* FIR IEquirippIe 'I

[De=ign Filter |

|Read\,r

2 If the filter design is quantized, skip to step 3. Otherwise, quantize the

filter by clicking the Set Quantization Parameters icon

. The

Filter arithmetic menu appears in the bottom half of the dialog.

3-5

3 Generating HDL Code for a Filter Design

3-6

. Filter Design & Analysis Tool - [untitled.fda]
File Edit Analysis Targets Wiew Window Help

Bl P] 5

DEHER| > | 220X DEMNHNMH#2 20 BLORE|W

'
'
'
'
'
T
'
'
'
'
'
o
'
'
'
'
'
'
F
'
'
'
'
'

— Current Filter Infarmation — _ Magnitude Respohse (dB)

50 I

0 :

Structure: Direct-Form FIR: @ :

Oreler: 50 @
s B | [

Sections: 1 = :

Stable: Yes E ;

Source: Designed 100 4

450 |

Save ... Baveds . | 0 5

Recall saved .. |

10
Frequency [kHz)

Fitter arithrnetic: IDoubIe-precision flosting-point d

L]
LA

There are ho additional settings for Double-precizion floating-point arthmetic.

e

E [

|Cumputin_q Fesponse ... done

Note All supported filter structures support fixed-point, quantization
type, and floating-point (double) realizations.

3 If necessary, adjust the setting of the Filter arithmetic option. The
FDATool displays the first of three tabbed panels of its dialog.

Opening the Generate HDL Dialog

. Filter Design & Analysis Tool - [untitled.fda *] ; A =10 x|
File Edit Analysis Targets Wiew Window Help

DEHER| > | 220X DEMNHNMH#2 20 BLORE|(W

— Current Filt

Structure:
Oreler:
Sections:
Stable:
Source:

Save .

et Infarmation

Direct-Form FIR

50

1

SfES

Designed (quantized)

| Saveas...l

Recall saved .. |

52

hannitucke (cB)

— Magnitude Responze (dE)

boosodoocooboooodboood]

o
P)
Ly
A
it
o
L

Frequency [kHz)

Filter arithmetic:

L]
LA

Murnersto

]
ot

EEe]

r wviord [engthe

(& Mumeratar frac, [enoth:

' Mumerstar ranoe (1

e

Costficierts | InputiOutout | Fiter Internts |

v Best-precision fraction lendgths
ol 2 ot [~ Use unsigned represertation

[~ Scale the numerator coefficients to fully
utilize the entire dyhamic range

Apply |

|Cumputin_q Fesponse ... done

4 Click Targets->Generate HDL. The FDATool displays the Generate
HDL dialog.

3 Generating HDL Code for a Filter Design

) Generate HDL {Direct-Form FIR, order = 50) ' o] A |
__ HOL fitter

Fitter taroet language: IVHDL d

Marme: [fiter

Target directory: |halsre

Reset type: I.i\.synchrnnnus d Rezet azserted level IActive-high = I
Coeff muttipliers: IMuItipIier d FIR aclder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

More Cptions |

[+ Impulze response

__Test hench types

Manes [filter_th
[Step response

[¥ SHOL file ¥ Ramp response
I verlog fle ¥ Chirp response

[+ \White noise response
™ ModelSim da file [~ User defined respanse

Test Bench Optiohs ... I |

Ok I Cancell Help I Appl\;l

If the coder does not support the structure of the current filter in the

FDATool, an error dialog appears. For example, if the current filter is a

quantized, lattice-coupled, allpass filter, the following dialog appears.
FDATool Error |

WHDL generation is only supported for ‘fir' 'firt' “antizyrimetrickir'
‘symmetrichir’ and ' 'diit 'df2* 'df2t SOS filker structures.

What Is Generated by Default?

What Is Generated by Default?

The Generate HDL dialogs provide many options for you to customize the
HDL code and test bench that the Filter Design HDL Coder generates. If you
choose not to specify customizations, the Filter Design HDL Coder applies the
default settings outlined in the following sections. Review these settings to
determine whether you need to apply customizations.

e “Default Settings for Generated Files” on page 3-9

o “Default Settings for Register Resets” on page 3-10

e “Default Settings for General HDL Code” on page 3-10

e “Default Settings for Code Optimizations” on page 3-11

o “Default Settings for Test Benches” on page 3-12

Default Settings for Generated Files
By default, the Filter Design HDL Coder

® Generates the following files, where Hd is the name of the quantized filter:

Language File Name
Verilog Filter source Hd.v
Filter test bench Hd_tb.v
VHDL Filter source Hd.vhd
Package (if needed) Hd_pkg.vhd
Test bench Hd_tb.vhd

® Places generated files in a subdirectory named hdlsrc, under your current
working directory.

® Includes VHDL entity and architecture code in a single source file.
For information on modifying these settings, see “What Are Your HDL

Requirements?” on page 3-13 and “Setting the Names and Location for
Generated HDL Files” on page 3-19.

3-9

3 Generating HDL Code for a Filter Design

3-10

Default Settings for Register Resets
By default, the Filter Design HDL Coder

¢ Uses an asynchronous reset when generating HDL code for registers.
e Uses an active-high (1) signal for register resets.
For information on modifying these settings, see “What Are Your HDL

Requirements?” on page 3-13 and “Customizing Reset Specifications” on page
3-26.

Default Settings for General HDL Code
By default, the Filter Design HDL Coder

e Names the generated VHDL entity or Verilog module with the name of
the quantized filter.

e Names a filter’s HDL ports as follows:

HDL Port Name
Input filter_in
Output filter_out
Clock input clk

Clock enable input clk_enable
Reset input reset

® Sets the data types for HDL ports as follows:

HDL Port VHDL Type Verilog Type
Clock input STD_LOGIC wire
Clock enable input STD_LOGIC wire
Reset STD_LOGIC wire
Data input STD_LOGIC_VECTOR wire
Data output STD_LOGIC_VECTOR wire

What Is Generated by Default?

Names coefficients as follows:

For... Names Coefficients...
FIR filters coeffn, where n is the coefficient number, starting with 1
IIR filters coeff_xm_sectionn, where x is a or b, m is the coefficient

number, and n is the section number
When declaring signals of type REAL, initializes the signal with a value
of 0.0.
Places VHDL configurations in any file that instantiates a component.

In VHDL, uses a type safe representation when concatenating zeros: '0’
& '0'...

In VHDL, applies the statement ELSIF clk'event AND clk='1'" THEN to
check for clock events.

In Verilog, uses time scale directives.

Allows a minimum of 3 bits of filter input and coefficient scale values to
overlap before a warning is issued.

Adds an extra input register and an extra output register to the filter code.
Appends _process to process names.

When creating labels for VHDL GENERATE statements:

= Appends _gen to VHDL section and block names

= Names VHDL output assignment blocks with the string outputgen

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-13 and “Customizing the HDL Code” on page 3-29.

Default Settings for Code Optimizations

By default, the Filter Design HDL Coder disables most optimizations. The
coder

® Generates HDL code that is bit-true to the original MATLAB filter function

and is not optimized for performance or space requirements.

3-11

3 Generating HDL Code for a Filter Design

3-12

® Applies a linear final summation to FIR filters. This is the form of
summation explained in most DSP text books.

* Enables multiplier operations for a filter, as opposed to replacing them

with additions of partial products.

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-13 and “Setting Optimizations” on page 3-54.

Default Settings for Test Benches

By default, the Filter Design HDL Coder generates a VHDL test bench that
inherits all the HDL settings that are applied to the filter’s HDL code. In
addition, the coder generates a test bench that

® Is named filter_tb.vhd.

® Forces clock, clock enable, and reset input signals.
® Forces clock enable and reset input signals to active high.

¢ Drives the clock input signal high (1) for 5 nanoseconds and low (0) for
5 nanoseconds.

® Forces reset signals for two cycles plus the hold time.
e Applies a hold time of 2 nanoseconds to filter reset and data input signals.

e Applies the following stimulus response types:

For Filters... Applies Response Types...

FIR, FIRT, Symmetric FIR, and Impulse, step, ramp, chirp, and white
Antisymmetric FIR noise

All others Step, ramp, and chirp

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-13 and “Customizing the Test Bench” on page 3-61.

What Are Your HDL Requirements?

What Are Your HDL Requirements?

As part of the process of generating HDL code for a filter designed in the
MATLAB environment, review the following checklist. The checklist will help
you determine whether you need to adjust any of the HDL property settings.
If your answer to any of the questions in the checklist is “yes,” go to the topic
listed in the second column of the table for information on how to adjust the
property setting to meet your project’s HDL requirements.

HDL Requirements Checklist

Requirement For More Information, See...

Language Selection

0 Do you need to adjust the target language setting? “Setting the Target Language” on
page 3-18

File Naming and Location Specifications

0 Do you want to specify a unique name, which does not “Setting the Names and Location
match the name of the quantized filter, for the VHDL for Generated HDL Files” on page
entity or Verilog module that represents the filter? 3-19

O Do you want the file type extension for generated “Setting the Names and Location
HDL files to be a string other than .vhd for VHDL or for Generated HDL Files” on page
.v for Verilog? 3-19

Reset Specifications

O Do you want to use synchronous resets? “Setting the Reset Style for

Registers” on page 3-26

0 Do you need the asserted level of the reset signal “Setting the Asserted Level for the

to be low (0)? Reset Input Signal” on page 3-28

Header Comment and General Naming Specifications

0 Do you want to add a specific string, such as a revision “Specifying a Header Comment” on
control string, to the end of the header comment page 3-30
block in each generated file?

O Do you want a string other than coeff to be used as the “Specifying a Prefix for Filter
base filter coefficient name? Coefficients” on page 3-32

3-13

3 Generating HDL Code for a Filter Design

3-14

HDL Requirements Checklist (Continued)

Requirement

For More Information, See...

O

If your filter design requires a VHDL package file,
do you want the name of the generated file to include
a string other than pkg?

Do you want a string other than _entity to be appended
to VHDL entity or Verilog module names if duplicate
names are detected?

Do you want a string other than _rsvd to be appended
to specified names and labels that are HDL reserved
words?

Do you want a string other than process to be
appended to HDL process names?

Do you want the Filter Design HDL Coder to write the
entity and architecture parts of generated VHDL
code to separate files?

If the Filter Design HDL Coder writes the entity and
architecture parts of VHDL code to separate files,
do you want strings other than entity and arch
included in the filenames?

“Setting the Postfix String for
VHDL Package Files” on page 3-22

“Setting the Postfix String for
Resolving Entity or Module Name
Conflicts” on page 3-33

“Setting the Postfix String for
Resolving HDL Reserved Word
Conflicts” on page 3-34

“Setting the Postfix String for
Process Block Labels” on page 3-37

“Splitting Entity and Architecture
Code into Separate Files” on page
3-23

“Splitting Entity and Architecture
Code into Separate Files” on page
3-23

Port Specifications

O

Do you want the Filter Design HDL Coder to use strings
other than filter_in and filter_out to name HDL
ports for the filter’s data input and output signals?

Do you need the Filter Design HDL Coder to declare the
filter’s data input and output ports with a VHDL
type other than STD_LOGIC VECTOR?

Do you want the Filter Design HDL Coder to use strings
other than clk and clk_enable to name HDL ports for
the filter’s clock and clock enable input signals?

Do you want the Filter Design HDL Coder to use a
string other than reset to name an HDL port for the
filter’s reset input signals?

“Naming HDL Ports” on page 3-38
“Specifying the HDL Data Type for
Data Ports” on page 3-40

“Naming HDL Ports” on page 3-38

“Naming HDL Ports” on page 3-38

What Are Your HDL Requirements?

HDL Requirements Checklist (Continued)

Requirement

For More Information, See...

0 Do you want the Filter Design HDL Coder to add an

extra input or output register to support the filter’s

HDL input and output ports?

“Suppressing Extra Input and
Output Registers” on page 3-42

Advanced Coding Specifications

O Do you expect the filter’s coefficient scale values to
be more than 3 bits smaller than the size of the filter’s

input?

0 Do you want the Filter Design HDL Coder to represent

all constants as aggregates?

0 Are you using an EDA tool that does not support loops?
Do you need the Filter Design HDL Coder to unroll and

remove VHDL FOR and GENERATE loops?
O Do you want the Filter Design HDL Coder to use the

VHDL rising_edge function to check for rising edges

when the filter is operating on registers?

0 Do you want to suppress Verilog time scale directives?

O Do you want the Filter Design HDL Coder to omit
configurations from generated VHDL code? Are
you going to create and store the filter’s VHDL
configurations in separate VHDL source files?

0 Do you want the Filter Design HDL Coder to use the

VHDL syntax "000000..." to represent concatenated
zeros instead of the type safe representation '0' & '0'?

O Do you want to suppress the initialization of signals
of type REAL to 0.0?

O Do you want the Filter Design HDL Coder to apply
typical DSP processor treatment of input data types

when generating code for addition and subtraction

operations?

“ Minimizing Quantization Noise
for Fixed-Point Filters” on page
3-43

“Representing Constants with
Aggregates” on page 3-45
“Unrolling and Removing VHDL
Loops” on page 3-46

“Using the VHDL rising_edge
Function” on page 3-47

“Suppressing Verilog Time Scale
Directives” on page 3-50

“Suppressing the Generation of
VHDL Inline Configurations” on
page 3-48

“Specifying VHDL Syntax for
Concatenated Zeros” on page 3-49

“Suppressing the Initialization of
Signals of Type REAL” on page
3-51

“Specifying Input Type Treatment
for Addition and Subtraction
Operations” on page 3-52

3-15

3 Generating HDL Code for a Filter Design

3-16

HDL Requirements Checklist (Continued)

Requirement

For More Information, See...

Optimization Specifications

O

O

O

Do you need numeric results optimized, even if the
results are not bit-true to the MATLAB filter function?

Do you want the Filter Design HDL Coder to replace
multiplier operations by applying canonic signed
digit (CSD) and factored CSD techniques?

Do you need the Filter Design HDL Coder to optimize
thefinal summation for FIR filters?

Do you want to optimize your filters clock rate?

“Optimizing Generated Code for
HDL” on page 3-55

“Optimizing Coefficient
Multipliers” on page 3-55

“Optimizing Final Summation for
FIR Filters” on page 3-57

“Optimizing the Clock Rate with
Pipeline Registers” on page 3-58

Test Bench Specifications

O

Do you want the name of the generated test bench file
to include a string other than _tb?

Do you want to generate a VHDL test bench?

Do you want to generate a Verilog file test bench?

Do you want to generate a ModelSim DO file test
bench?

If the test bench type is a ModelSim DO file, does your
application require you to specify any simulation
flags?

Are you using a user-defined external source to force
clock enable input signals to a constant value?

If the test bench is to force clock enable input signals,
do you want it to force the signals to active low (0)?

Are you using a user-defined external source to force
clock input signals?

“Setting the Names and Location
for Generated HDL Files” on page
3-19

“Specifying a Test Bench Type” on
page 3-62
“Specifying a Test Bench Type” on
page 3-62
“Specifying a Test Bench Type” on
page 3-62

“Specifying a Test Bench Type” on
page 3-62

“Configuring the Clock” on page
3-65

“Configuring the Clock” on page
3-65

“Configuring the Clock” on page
3-65

What Are Your HDL Requirements?

HDL Requirements Checklist (Continued)

Requirement

For More Information, See...

O

If the test bench is to force clock input signals, do
you want the signals to be driven high or low for a
duration other than 5 nanoseconds?

Are you using a user-defined external source to force
reset input signals?

If the test bench is to force reset input signals, do you
want it to force the signals to active low (0)?

If the test bench is to force reset input signals, do you
want it to apply a hold time other than two cycles plus
a hold time of 2 nanoseconds?

Do you want to apply a hold time other than 2
nanoseconds to filter data input signals?

Do you want to customize the stimulus to be applied
by the test bench?

“Configuring the Clock” on page
3-65

“Configuring Resets” on page 3-67

“Configuring Resets” on page 3-67

“Configuring Resets” on page 3-67

“Setting a Hold Time for Data
Input Signals” on page 3-69

“Setting Test Bench Stimuli” on
page 3-72

3-17

3 Generating HDL Code for a Filter Design

Setting the Target Language

By default, the Filter Design HDL Coder generates VHDL code for a filter. If
you retain the VHDL setting, Generate HDL dialog options that are specific
to Verilog are greyed out and are not selectable.

If you require or prefer to generate Verilog code, select Verilog for the Filter
target language option in the HDL filter pane of the Generate HDL
dialog. This setting causes the coder to enable options that are specific to
Verilog and to grey out and disable options that are specific to VHDL.

Command Line Alternative: Use the generatehdl function with the
TargetLanguage property to set the language to VHDL or Verilog.

3-18

Setting the Names and Location for Generated HDL Files

Setting the Names and Location for Generated HDL Files

By default, the Filter Design HDL Coder creates the HDL files listed in the
following table and places them in subdirectory hdlsrc under your current
working directory. The Filter Design HDL Coder derives HDL filenames from
the name of the filter for which the HDL code is being generated and the file
type extension .vhd or .v for VHDL and Verilog, respectively. The table lists
example filenames based on filter name Hq.

Language Generated File Filename Example

Verilog Source file for the dfilt name.v Hg.v
quantized filter
Source file for the dfilt name_tb.v Hg_tb.v
filter’s test bench

VHDL Source file for the dfilt _name.vhd Hg.vhd

quantized filter

Source file for the dfilt name_tb.vhd Hg_tb.vhd
filter’s test bench

Package file, if dfilt _name pkg.vhd Hg_pkg.vhd
required by the
filter design

The Filter Design HDL Coder also uses the filter name to name the VHDL
entity or Verilog module that represents the quantized filter in the HDL
code. Assuming a filter name of Hd, the name of the filter entity or module in
the HDL code is Hd.

By default, the Filter Design HDL Coder includes the code for a filter’s VHDL
entity and architectures in the same VHDL source file. Alternatively, you can
specify that the Filter Design HDL Coder write the generated code for the
entity and architectures to separate files. For example, if the filter name is
Hd, the Filter Design HDL Coder writes the VHDL code for the filter to files
Hd_entity.vhd and Hd_arch.vhd.

The following sections explain how to adjust the preceding default settings.

® “Setting Filter Entity and General File Naming Strings” on page 3-20

3-19

3 Generating HDL Code for a Filter Design

3-20

e “Redirecting Filter Design HDL Coder Output” on page 3-21
* “Setting the Postfix String for VHDL Package Files” on page 3-22
e “Splitting Entity and Architecture Code into Separate Files” on page 3-23

Setting Filter Entity and General File Naming Strings
To set the string that the Filter Design HDL Coder uses to name the filter

entity or module and generated files, specify a new value in the Name text
field of the HDL filter pane of the Generate HDL dialog. The Filter Design
HDL Coder uses the Name string to

¢ Label the VHDL entity or Verilog module for your filter

e Name the file containing the HDL code for your filter

® Derive names for the filter’s test bench and package files

By default, the filter HDL files are generated with a .vhd or .v file extension,
depending on the language selection. To change the file extension,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
2 Click the General tab on the HDL Options dialog.

3 Type the new file extension in the Verilog file extension or VHDL file
extension text field.

4 Click Apply to register the change or OK to register the change and close
the dialog.

Based on the following dialogs settings, the coder generates the filter file
MyFIR.vhdl.

). Generate HDL {Direct-Form FIR, order =

— HOL fitter
Fitter target language: IVHDL j
Mame: |M\,r'FIR
Target directory: |hlsre

Setting the Names and Location for Generated HDL Files

J HDL Options 1 [m] [

General | Ports | Ackvanced |

Comment in header: |

serilog file extension: | IVHDL file extension: [vhal I

Note When specifying strings for filenames and file type extensions, consider
platform-specific requirements and restrictions. Also consider postfix strings
the Filter Design HDL Coder appends to the Name string, such as _tb
and_pkg.

Command Line Alternative: Use the generatehdl and generatetb
functions with the Name property to set the name of your filter entity and the
base string for generated HDL filenames. Specify the functions with the
VerilogFileExtension or VHDLFileExtension property to specify a file type
extension for generated HDL files.

Redirecting Filter Design HDL Coder Output

By default, the Filter Design HDL Coder places all generated HDL files in
subdirectory hd1lsrc under your current working directory. To direct Filter
Design HDL Coder output to a directory other than the default target
directory, specify a new directory in the Target directory text field in the
HDL filter pane of the Generate HDL dialog. If you specify a directory that
does not exist, the Filter Design HDL Coder creates the directory for you
before depositing the generated files. Your directory specification can be

one of the following:

¢ Directory name. In this case, the Filter Design HDL Coder looks for, and if
necessary, creates a subdirectory under your current working directory.

® An absolute path to a directory under your current working directory. If
necessary, the Filter Design HDL Coder creates the specified directory.

® A relative path to a higher level directory under your current working
directory. For example, if you specify ../../../myfiltvhd, the Filter
Design HDL Coder checks whether a directory named myfiltvhd exists

3-21

3 Generating HDL Code for a Filter Design

3-22

three levels up from your current working directory, creates the directory if
it does not exist, and writes all generated HDL files to that directory.

The following dialog sets the directory to MyFIRBetaVHDL.

). Generate HDL (Direct-Form FIR, order = 50

—HDL fitter
Fitter target language: I “erilog j
Marme: |MyFIR
Target directory: |MyFIRBetaVHDL

This change instructs the Filter Design HDL Coder to create the subdirectory
MyFIRBetaVHDL under the current working directory and write generated
HDL files to that directory.

Command Line Alternative: Use the generatehdl and generatetb
functions with theTargetDirectory property to redirect Filter Design HDL
Coder output.

Setting the Postfix String for VHDL Package Files

By default, the Filter Design HDL Coder appends the postfix pkg to the base
filename when generating a VHDL package file. To rename the postfix string
for package files, do the following:

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the General tab.

3 Specify a new value in the Package postfix text field.

Setting the Names and Location for Generated HDL Files

A HDL Options

General | Ports | Advanced |

(=

Commert in header: |

“erilog file extension:
Coefficient narme:
Entity conflict postfix:

Reserved woard postfix:

[

WHOL file extension: whid

|ooett

I_errtity
I_rsvd

Clocked process postfix: Ijrocess

Package postfiz: |k

[Spiit ertity and architecture
Split entity file postfix: I_ent'rt\,n'
Split arch. file postfiz: I_arch

QK I Cancell

Hel Agpaly I

Note When specifying a string for use as a postfix in filenames, consider
the size of the base name and platform-specific file naming requirements

and restrictions.

4 Click Apply to register the change or OK to register the change and close

the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the PackagePostfix property to rename the filename postfix
for VHDL package files.

Splitting Entity and Architecture Code into Separate

Files

By default, the Filter Design HDL Coder includes a filter’s VHDL entity and
architecture code in the same generated VHDL file. Alternatively, you can
instruct the Filter Design HDL Coder to place the entity and architecture
code in separate files. For example, instead of all generated code residing in
MyFIR.vhd, you can specify that the code reside in MyFIR entity.vhd and

MyFIR_arch.vhd.

3-23

3 Generating HDL Code for a Filter Design

3-24

The Filter Design HDL Coder derives the names of the entity and architecture
files from

¢ The base filename, as specified by the Name text field in the HDL filter
pane of the Generate HDL dialog

® Default postfix string values entity and _arch

* The VHDL file type extension, as specified by the VHDL file extension
text field on the General pane of the HDL Options dialog

To split the filter source file, do the following:

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the General tab.

3 Select Split entity and architecture. The Filter Design HDL Coder
enables the text field options Split entity file postfix and Split arch.
file postfix.

J. HDL Dptions 2| =10 x|

General | Ports | Advanced |

Commert in header: |

“erilog file extension: I.v WHOL file extension: whid
Coefficient name: Icoeff Package postfiz: _pkiy
Ertity conflict postfic |_errtity [+ Split ertity and architecture

Reserved woard postfix: I_rsvd Split entity file postfix: I_ent'rt\,n'
Clocked process postfix: Ijrocess Split arch. file postfiz: I_arch

Ok I Cancell Help I Applyl

4 Specify new strings in the postfix text fields if you want the Filter Design
HDL Coder to use postfix string values other than entity and _arch to
identify the generated VHDL files.

Setting the Names and Location for Generated HDL Files

Note When specifying a string for use as a postfix value in filenames,
consider the size of the base name and platform-specific file naming
requirements and restrictions.

5 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property SplitEntityArch to split the filter’s VHDL
code into separate files. Use properties SplitEntityFilePostfix and
SplitArchFilePostfix to rename the filename postfix for VHDL entity and
architecture code components.

3-25

3 Generating HDL Code for a Filter Design

Customizing Reset Specifications

Reset options appear in the lower half of the HDL filter pane of the
Generate HDL dialog, as highlighted in the screen display below.

-} Generate HDL (Direct-Form FIR, order = 50) ! i |EI|_>
__ HOL fitter
Filter target language: IVHDL d
Matne: |firter
Target directory: Jhallsre
Reszet type: Asynchronous d Reszet aszerted level | active-high - I
Coeff muttipliers: | muttilisr d FIF: scider style: Linear d
[~ Cptirize for HOL [~ Add pipeline redisters
Mlore Cptions .. |

Use the reset options for

* “Setting the Reset Style for Registers” on page 3-26
® “Setting the Asserted Level for the Reset Input Signal” on page 3-28

Setting the Reset Style for Registers

By default, the Filter Design HDL Coder uses an asynchronous reset style
when generating HDL code for registers. Whether you should set the style to
asynchronous or synchronous depends on the type of device you are designing
(for example, FPGA or ASIC) and preference.

The following code fragment illustrates the use of asynchronous resets. Note
that the process block does not check for an active clock before performing
a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay _pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk'event AND clk = '1' THEN

3-26

Customizing Reset Specifications

IF clk_enable = '1" THEN
delay pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay pipeline(0 TO 49);
END IF;
END IF;
END PROCESS delay pipeline_process;

To change the reset style to synchronous, select Synchronous from the Reset
type menu in the HDL filter pane of the Generate HDL dialog.

). Generate HDL {Direct-Form FIR, order = 50

— HOL fitter

Fitter target language: IVHDL

Mame: |fi|ter
Target directory: |hd|3rc
Reset type:

e £E e Mitimeee Dua

Code for a synchronous reset follows. This process block checks for a clock
event, the rising edge, before performing a reset.

delay _pipeline_process : PROCESS (clk, reset)
BEGIN
IF rising_edge(clk) THEN
IF reset = '1'" THEN
delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk_enable = '1' THEN
delay pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay pipeline(0 TO 49);
END IF;
END IF;
END PROCESS delay pipeline_process;

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ResetType to set the reset style for your filter’s
registers.

3-27

3 Generating HDL Code for a Filter Design

3-28

Setting the Asserted Level for the Reset Input Signal

The asserted level for the reset input signal determines whether that signal
must be driven to active high (1) or active low (0) for registers to be reset in
the filter design. By default, the Filter Design HDL Coder sets the asserted
level to active high. For example, the following code fragment checks whether
reset is active high before populating the delay pipeline register:

Delay Pipeline_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0));

To change the setting to active low, select Active-low from the Reset
asserted level menu in the HDL filter pane of the Generate HDL dialog.

) Generate HDL {Direct-Form FIR, order = 5l] 1 [] S|
— HDL filter

Filter target language: IVHDL d

Mamme: [ritter

Target directory: |hd|3rc

Reszet type: I.i\.synchrnnnus j Reset aszerted level

e FE v Bielioens L, e lie.. [(== T

With this change, the IF statement in the preceding generated code changes to
IF reset = '0" THEN
Command Line Alternative: Use the generatehdl and generatetb

functions with the property ResetAssertedLevel to set the asserted level for
the filter’s reset input signal.

Customizing the HDL Code

Customizing the HDL Code

You select most HDL code customizations from options on the HDL Options
dialog. Options that are specific to VHDL or Verilog are active only if that
language is selected. Inactive options appear grey and are not selectable. An
option may also appear inactive if it is dependent on the selection of another
option.

Options provided by the HDL Options dialog are categorized into three
tabs: General, Ports, and Advanced.

The following dialog shows general options that are active for VHDL.

<) HDL Options o] |

General | Ports | Advanced |

Commert in header: |

I.v WHDL file extension: whid
Coefficient name: Icneff Packane postfic kg
Entity conflict postfix: I_ent'rt\,r [Spiit ertity and architecture

Reserved woard postfix: I_rsvd Split entity file postiix: I_ent'rt\,n'

Clocked process postfix: IJ:I[’I:ICESS i I_arch
oK | cencel| Help | 2eeiv |

Note that the Verilog file extension option is inactive due to the VHDL
language selection. The Split entity file postfix and Split arch. file
postfix options are inactive due to a dependency on the setting of Split
entity and architecture.

The following sections explain how to use this dialog to specify naming, port,
and advanced coding customizations:

® “Specifying a Header Comment” on page 3-30
® “Specifying a Prefix for Filter Coefficients” on page 3-32

3-29

3 Generating HDL Code for a Filter Design

»

“Setting the Postfix String for Resolving Entity or Module Name Conflicts
on page 3-33

“Setting the Postfix String for Resolving HDL Reserved Word Conflicts”
on page 3-34

“Setting the Postfix String for Process Block Labels” on page 3-37
“Naming HDL Ports” on page 3-38

“Specifying the HDL Data Type for Data Ports” on page 3-40
“Suppressing Extra Input and Output Registers” on page 3-42

“ Minimizing Quantization Noise for Fixed-Point Filters” on page 3-43
“Representing Constants with Aggregates” on page 3-45

“Unrolling and Removing VHDL Loops” on page 3-46

“Using the VHDL rising_edge Function” on page 3-47

“Suppressing the Generation of VHDL Inline Configurations” on page 3-48
“Specifying VHDL Syntax for Concatenated Zeros” on page 3-49
“Suppressing Verilog Time Scale Directives” on page 3-50
“Suppressing the Initialization of Signals of Type REAL” on page 3-51

“Specifying Input Type Treatment for Addition and Subtraction Operations”
on page 3-52

Specifying a Header Comment

The Filter Design HDL Coder includes a header comment block, such as the
following, at the top of the files it generates:

- Module:Hd

- Generated by MATLAB(R) 7.0 and the Filter Design HDL Coder 1.0.

- Generated on: 2004-02-04 09:42:43

Customizing the HDL Code

You can use the Comment in header option to add a comment string, such
as a revision control string, to the end of the header comment block in each
generated file. For example, you might use this option to add the revision
control tag $Revision: 1.1.4.24.2.1 $. With this change, the preceding
header comment block would appear as follows:

- Module:Hd
- Generated by MATLAB(R) 7.0 and the Filter Designer HDL Coder 1.0.
- Generated on: 2004-02-04 09:42:43

- $Revision: 1.1.4.24.2.1 §

To add a header comment,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the General tab. General HDL coding options appear.

3 Type the comment string in the Comment in header text box, as shown

in the following display.

7. HDL Options) P] S

General | Potts | Advancedl

Comment in header: |$Revision: 11.213%

L] L P e LI

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb

functions with the property UserComment to add a comment string to the end
of the header comment block in each generated HDL file.

3-31

3 Generating HDL Code for a Filter Design

3-32

Specifying a Prefix for Filter Coefficients

The Filter Design HDL Coder declares a filter’s coefficients as constants
within an rtl architecture. The coder derives the constant names adding the
prefix coeff to the following:

For... The Prefix Is Concatenated with...
FIR filters Each coefficient number, starting with 1.
Examples: coeff1, coeff22

IIR filters An underscore (_) and an a or b coefficient name (for example,
_a2, b1, or b2) followed by the string sectionn, where n
is the section number.

Example: coeff_b1_section3 (first numerator coefficient of
the third section)

For example:

ARCHITECTURE rtl OF Hd IS

- Type Definitions

TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed(15 DOWNTO 0); -- sfix16_Eni5
CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_Eni5
CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15
CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(-81, 16); -- sfix16_En15
CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(120, 16); -- sfix16_Eni5

To use a prefix other than coeff,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the General tab.

3 Enter a new string in the Coefficient name text box, as shown in the
following display.

Customizing the HDL Code

J HDL Options

General | Ports | Advanced |

Comment in header: I
“erilog file extension: I.v

Coefficient name: ICD

The string that you specify
® Must start with a letter.
e Cannot end with an underscore ()

¢ Cannot include a double underscore (_)

Note If you specify a VHDL or Verilog reserved word, the Filter Design
HDL Coder appends a reserved word postfix to the string to form a valid
identifier. If you specify a prefix that ends with an underscore, the coder
replaces the underscore character with under. For example, if you specify
coef_, the coder generates coefficient names such as coefunderi.

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property CoeffName to change the base name for filter
coefficients.

Setting the Postfix String for Resolving Entity or
Module Name Conflicts

The Filter Design HDL Coder checks whether multiple entities in VHDL or
multiple modules in Verilog share the same name. If a name conflict exists,
the Filter Design HDL Coder appends the postfix entity to the second of the
two matching strings.

To change the postfix string that the Filter Design HDL Coder applies,

3-33

3 Generating HDL Code for a Filter Design

3-34

abs
and
begin
case

downto

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the General tab.

3 Enter a new string in the Entity conflict postfix text box, as shown in
the following display.

J. HDL Options

General | Potts | Acvanced |

Comment in header: I
“erilog file extension: I.v

Coefficient name: Icneff
Entity conflict postfix: I_mu:udule

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property EntityConflictPostfix to change the entity or
module conflict postfix string.

Setting the Postfix String for Resolving HDL Reserved

Word Conflicts

The Filter Design HDL Coder checks whether any strings that you specify as
names, postfix values, or labels are VHDL or Verilog reserved words.

VHDL Reserved Words

access after alias all
architecture array assert attribute
block body buffer bus
component configuration constant disconnect
else elsif end entity

Customizing the HDL Code

exit
generic
in
library
mod

not

or
postponed
record
return
signal
srl

type
variable

xnor

always

buf

casez
default
else
endgenerate
endtask
fork

highz1

initial

file
group
inertial
linkage
nand

null
others
procedure
register
rol
shared
subtype
unaffected
wait

xor

for
guarded
inout
literal
new

of

out
process
reject
ror

sla
then
units

when

Verilog Reserved Words

and
bufifo
cell
defparam
end
endmodule
event
function
if

inout

assign
bufifi

cmos

design
endcase
endprimitive
for

generate
ifnone

input

function
if

is

loop
next

on
package
pure
rem
select
sll

to
until

while

automatic
case
config
disable

endconfig

endspecify

force
genvar
incdir

instance

generate
impure
label
map

nor

open
port
range
report
severity
sra
transport
use

with

begin

casex
deassign
edge
endfunction
endtable
forever
highz0
include

integer

3-35

3 Generating HDL Code for a Filter Design

3-36

join
macromodule
nmos

notif1
posedge
pullup
realtime
rpmos
showcancelled
strong0
task

tri

trireg

wand

wor

large liblist library
medium module nand

nor noshowcancelled not

or output parameter
primitive pullo pulli
pulsestyle onevent pulsestyle ondetect rcmos
reg release repeat
rtran rtranifo rtranif1
signed small specify
strong1 supplyO supply1
time tran tranifo
trio trit triand
unsigned use vectored
weak0 weak while
xnor xor

localparam
negedge
notifo
pmos
pulldown
real
rnmos
scalared
specparam
table
tranifi
trior
wait

wire

If you specify a reserved word, the Filter Design HDL Coder appends the
postfix _rsvd to the string. For example, if you try to name your filter mod,
for VHDL code, the Filter Design HDL Coder adds the postfix _rsvd to form

the name mod_rsvd.

To change the postfix string that the Filter Design HDL Coder applies,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.

The HDL Options dialog appears.
2 Click the General tab.

3 Enter a new string in the Reserved word postfix text box, as shown in

the following display.

Customizing the HDL Code

J. HDL Options

General | Potts | Ackanced |

Catntnent in header: I
“erilog file extension: I.v

Coefficient name: Icoeff
Entity conflict postfix: I_errtity
Rezerved word postfix: I_R

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ReservedWordPostfix to change the reserved
word postfix string.

Setting the Postfix String for Process Block Labels

The Filter Design HDL Coder uses process blocks to modify the content of a
filter’s registers. The label for each of these blocks is derived from a register
name and the postfix _process. For example, the coder derives the label
delay pipeline_process in the following block from the register name
delay pipeline and the postfix string process.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay _pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1" THEN
delay_pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
END IF;
END IF;
END PROCESS delay pipeline_process;

3-37

3 Generating HDL Code for a Filter Design

3-38

You have the option of setting the postfix string to a value other than
_process. For example, you might change it to _clkproc. To change the
string,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the General tab.

3 Enter a new string in the Clocked process postfix text box, as shown in
the following display.

J. HDL Options

General | Ports | Advanced |

Corntnent in header: I
“erilog file extensior: I.v

Coefficient name: IF

Erttity conflict postfi: [entty

Rezerved word postfix I_rsvd—
ICIocked process postfix W I

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ClockProcessPostfix to change the postfix string
appended to process labels.

Naming HDL Ports
By default, the Filter Design HDL Coder names a filter’s HDL ports as follows:

Customizing the HDL Code

HDL Port Default Port Name
Input port filter_in

Output port filter_ out

Clock port clk

Clock enable port clk _enable

Reset port reset

For example, the default VHDL declaration for entity Hd looks like the
following:

ENTITYHd IS

PORT(clk : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15
filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_Eni5
)5
ENDHd;

To change any of the port names,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the Ports tab. Port options appear, as shown in the following display.

3-39

3 Generating HDL Code for a Filter Design

(=

A HDL Options

Generall F‘Drtsl Advanced

Input por: |fi|ter_in (e (AT Flk

Clock erahble port: Ic:lk_enable
Input data type: Is{d_logic_vectnr d

Reszet input port: Ireset
Cutput part: [ritter_out

[¥ Acid input register

Output data type: ISame as Input data type j [# dd output register

Ok I Cancell Help I Applyl

3 Enter new strings in the following text boxes, as necessary:
¢ Input port
¢ Output port
¢ Clock port

Clock enable port
¢ Reset input port

4 Click Apply to register the changes or OK to register the changes and
close the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the properties InputPort, OutputPort, ClockInputPort,
ClockEnableInputPort, and ResetInputPort to change the names of a filter’s
VHDL ports.

Specifying the HDL Data Type for Data Ports

By default, the Filter Design HDL Coder declares a filter’s input and
output data ports to be of type std_logic_vector in VHDL and type wire
in Verilog. If you are generating VHDL code, alternatively, you can specify
signed/unsigned, and for output data ports, Same as input data type.

3-40

Customizing the HDL Code

The Filter Design HDL Coder applies type SIGNED or UNSIGNED based on the
data type specified in the filter design.

To change the VHDL data type setting for the input and output data ports,
1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the Ports tab. Port options appear.

3 Select a data type from the Input data type or Output data type menu
identified in the following display. The type for Verilog ports is always wire.

J. HDL Options

General | Portz | Advanced |

Input port: |fi|ter_in

Input data type: sigred/unsigned H

Cutput port; [fitter_out

Output data type: | Same as Input data type - |

Note The setting of Input data type does not affect double-precision
input, which is always generated as type REAL for VHDL and wire[63:0]
for Verilog.

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb

functions with the properties InputType and OutputType to change the VHDL
data type for a filter’s input and output ports.

3-41

3 Generating HDL Code for a Filter Design

3-42

Suppressing Extra Input and Output Registers

The Filter Design HDL Coder adds an extra input register (input_register)
and an extra output register (output_register) during HDL code generation.
These extra registers can be useful for timing purposes, but they add to the
filter’s overall latency. The following process block writes to extra output
register output_register when a clock event occurs and clk is active high (1):

Output_Register_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
output_register <= (OTHERS => '0');
ELSIF clk'event AND clk = '1" THEN
IF clk_enable = '1" THEN
output_register <= output_typeconvert;
END IF;
END IF;
END PROCESS Output_Register_ Process;

If overall latency is a concern for your application and you have no timing
requirements, you can suppress generation of the extra registers as follows:

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the Ports tab. Port options appear.

3 Clear Add input register and Add output register per your
requirements. The following display shows the setting for suppressing the
generation of an extra input register.

Customizing the HDL Code

J. HDL Options

(=

Generall F‘Drtsl Advanced

Input por: |fi|ter_in (e (AT Flk

Clock erahble port: Ic:lk_enable
Input data type: Is{d_logic_vectnr d

Reszet input port: Ireset
Cutput part: [ritter_out

Output data type: ISame as Input data type j [# dd output register

Ok I Cancell Help I Applyl

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the properties AddInputRegister and AddOutputRegister to
add an extra input or output register.

Minimizing Quantization Noise for Fixed-Point Filters

For fixed-point filters, an option is available for controlling whether the coder
generates a warning for scale values that are below a specified numeric
threshold relative to the input data format. These warnings help identify
scale values that cause the input range to be quantized to near zero, adding
quantization noise.

You can control the warnings by specifying an overlap threshold. The coder
temporarily converts a scale value to the data type of the filter input. Then,
the coder checks whether the number of leading zeros in the converted value
is greater than or equal to the specified overlap threshold. If this condition
exists, the coder generates a warning.

You can prevent the coder from generating these warnings by setting the
minimum overlap to the number of bits in the input format. However, if

3-43

3 Generating HDL Code for a Filter Design

Example Input

Format
1 16
2 16
4
5 8
6 8

3-44

the converted scale value equals zero, the coder reports an error because
the input range is quantized away.

Consider the following examples. The second and third examples generate
warnings because the number of leading zeros in the binary representation of
the converted scale value is equal to or greater than the specified minimum
scale value overlap. The first, fourth, and fifth examples do not generate

a warning because the number of leading zeros is less than the specified
minimum overlap. The last example generates an error because the input
range is quantized away, causing the binary representation of the converted
value to always be zero.

Fraction Scale Specified Binary Warning
Length Value Minimum Representation Generated?
Overlap of Converted Scale

(bits) Value
15 0625 3 0.101000000000000 No. <3

leading zeros

15 0.247 3 0.001111110011101 Yes
225 2 0010.0100 Yes
4 4.125 2 0100.0010 No. <2
leading zeros
4 0.0625 8 0000.0001 No. <8
leading zeros
4 0.00625 8 0000.0000 No. Error.

By default, the minimum overlap is 3 bits. If this is not sufficient for your
filter design, adjust the setting as follows:

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the Advanced tab. Advanced coding options appear.

3 Specify a positive integer in the Minimum overlap of scale values (bits)
text field, as shown in the following display. To suppress the warnings,
specify the number of bits in the input format.

Customizing the HDL Code

J. HDL Options

General | Ports | Acvanced |

Minirnum overlap of scale values (hits): IS

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ScaleWarnBits to reset the minimum overlap of
scale values between filter coefficients and filter input.

Representing Constants with Aggregates

By default, the Filter Design HDL Coder represents constants as scalars or
aggregates depending on the size and type of the data. The coder represents
values that are less than 232 — 1 as integers and values greater than or equal
to 232 — 1 as aggregates. The following VHDL constant declarations are
examples of declarations generated by default for values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16);
CONSTANT coeff2 :signed (15 DOWNTO 0) to_signed(-89, 16);

If you prefer that all constant values be represented as aggregates, you can
instruct the Filter Design HDL Coder to produce HDL code accordingly as
follows:

1 Click More Options in the HDL filter pane of the Generate HDL dialog.

The HDL Options dialog appears.
2 Click the Advanced tab. Advanced coding options appear.

3 Select Represent constant values by aggregates, as shown the
following display.

3-45

3 Generating HDL Code for a Filter Design

3-46

J HDL Dptions

General | Ports | Advanced |

Minimum owerlap of scale values (bits): |3

I|7 Represent constant values by agaregates I

4 Click Apply to register the change or OK to register the change and close
the dialog.

The preceding constant declarations would now appear as follows:

CONSTANT coeff1 :signed (15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0',
OTHERS => ', '); -- sfix16_En15
CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => '0O',
OTHERS => "', '); -- sfix16_En15

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UseAggregatesForConst to represent all
constants in the HDL code as aggregates.

Unrolling and Removing VHDL Loops

By default, the Filter Design HDL Coder supports VHDL loops. However,
some EDA tools do not support them. If you are using such a tool along with
VHDL, you might need to unroll and remove FOR and GENERATE loops from
your filter’s generated VHDL code. Verilog code is always unrolled.

To unroll and remove FOR and GENERATE loops,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the Advanced tab. Advanced coding options appear.

3 Select Loop unrolling, as shown in the following display.

Customizing the HDL Code

J. HDL Options

General | Ports | Advanced |

Minirnum overlap of scale values (hits): |3
[~ Represert constant values by agaregstes

[~ Use 'rizing_edge' for registers

® (Click Apply to register the change or OK to register the change and
close the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property LoopUnrolling to unroll and remove loops from
generated VHDL code.

Using the VHDL rising_edge Function

The Filter Design HDL Coder can generate two styles of VHDL code for
checking for rising edges when the filter operates on registers. By default, the
generated code checks for a clock event, as shown in the ELSIF statement of
the following VHDL PROCESS block:

Delay Pipeline_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0));
ELSEIF clk'event AND clk = '1'" THEN
IF clk_enable = '1" THEN
delay _pipeline(0) <= signed(filter_in);
delay_pipeline(1 TO 50) <= dleay_pipeline(0 TO 49);
END IF;
END IF;

3-47

3 Generating HDL Code for a Filter Design

3-48

END PROCESS Delay Pipeline_Process ;

If you prefer, the coder can produce VHDL code that applies the VHDL
rising_edge function instead. For example, the ELSIF statement in the
preceding PROCESS block would be replaced with the following statement:

ELSIF rising_edge(clk) THEN
To use the rising edge function,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the Advanced tab. Advanced coding options appear.

3 Select Use ’rising_edge’ for registers, as shown in the following dialog.

J HDL Options

General | Parts | Ackvanced |

Winirum averlap of scale values (hits): |3

[~ Represert constant values by agogregstes

I|7 Uze 'fizing_edge’ for registers: I

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UseRisingEdge to use the VHDL rising_edge
function to check for rising edges during register operations.

Suppressing the Generation of VHDL Inline
Configurations

VHDL configurations can be either inline with the rest of the VHDL code for
an entity or external in separate VHDL source files. By default, the Filter
Design HDL Coder includes configurations for a filter within the generated

Customizing the HDL Code

VHDL code. If you are creating your own VHDL configuration files, you
should suppress the generation of inline configurations.

To suppress the generation of inline configurations,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the Advanced tab. Advanced coding options appear.

3 Clear Inline VHDL configuration, as shown in the following display.

T (=5

J. HDL Options
General | Parts | Ackvanced |

Minirnurn overlap of scale values (bits) |3 ¥ Initislize real signats

[~ Cast hefore sum
[~ Represert constant values by sogregates

[Uze Wetilog timescale directives

[~ Use ‘tising_edoe’ for registers

[Inline %HOL conficurstiore

Loop unrallin
r P g [¥ Concatenste type safe zeros

ik, I Cancell Help I Applyl

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property InlineConfigurations to suppress the
generation of inline configurations.

Specifying VHDL Syntax for Concatenated Zeros

In VHDL, the concatenation of zeros can be represented in two syntax
forms. One form, '0' & '0', is type safe. This is the default. The alternative
syntax, "000000...", can be easier to read and is more compact, but can lead
to ambiguous types.

3-49

3 Generating HDL Code for a Filter Design

3-50

To use the syntax "000000. .." for concatenated zeros,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the Advanced tab. Advanced coding options appear.

3 Clear Concatenate type safe zeros, as shown in the following display.

(=

J. HDL Options
General | Ports | Advanced |

Winirum overlap of scale values (bits) |3 7 Intialize real signats

[~ Cast hefore sum
[~ Represent constant values by sggregates

¥ Uze Yetilog timescale directives

[~ Use ‘tizing_edoe' for registers

[¥ Inline %HOL configurstior

Loop unrallin
r B g II_ Concatenate type safe zeros I

Ok I Cancell Help I Applyl

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property SafezZeroConcat to use the syntax "000000...",
for concatenated zeros.

Suppressing Verilog Time Scale Directives

In Verilog, the Filter Design HDL Coder generates time scale directives
(timescale), as appropriate, by default. This compiler directive provides a
way of specifying different delay values for multiple modules in a Verilog file.

To suppress the use of “timescale directives,

Customizing the HDL Code

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the Advanced tab. Advanced coding options appear.
3 Clear Use Verilog “timescale directives, as shown in the following

display.

J. HDL Dptions 2| =10 x|

General | Ports | Advanced |

Winirum overlap of scale values (bits) |3 7 Intialize real signats

[~ Cast hefore sum
[~ Represent constant values by syuregstes

[~ Use Yerilog ‘timescale directives

[~ Uze 'tising_edye! for registers
I~ it YHOL configurstion

Lo unrallin
I P 4 [~ Concatenste type safe zeros

Ok I Cancell Help I Applyl

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UseVerilogTimescale to suppress the use of
time scale directives.

Suppressing the Initialization of Signals of Type REAL

By default, the Filter Design HDL Coder initializes signals of type REAL with a
value of 0.0. The coder assumes the signal is being used in a double-precision
model. If it is possible that the filter’s model might change, you can consider
suppressing the initialization.

To suppress the initialization of type REAL signals to 0.0,

3-51

3 Generating HDL Code for a Filter Design

3-52

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.

2 Click the Advanced tab. Advanced coding options appear.

3 Clear Initialize real signals, as shown in the following display.

<) HDL Options 0] =l

General | Parts | Advanced |

Minitmurm overlap of scale values (hits): |3 I L nlalee resl clonaie I

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property InitializeRealSignals to suppress the
initialization of type REAL signals.

Specifying Input Type Treatment for Addition and
Subtraction Operations

MATLAB and typical DSP processors handle the treatment of input data
types for addition and subtraction operations differently. MATLAB operates
on input data using the data types as specified and converts the result to the
result type. Typical DSP processors, on the other hand, type cast input data
to the result type before operating on the data. Depending on the operation,
the results can be very different.

By default, the Filter Design HDL Coder applies the MATLAB treatment of
the input data. To specify the DSP processor treatment,

1 Click More Options in the HDL filter pane of the Generate HDL dialog.
The HDL Options dialog appears.
2 Click the Advanced tab. Advanced coding options appear.

3 Select Cast before sum, as shown in the following display.

Customizing the HDL Code

2 HDL Options) i [

General | Ports | Advanced |

Minirnurn overlap of scale values (bits) |3 7 Inttslize real signats

[~ Represent constant values by aggregates

Note The setting of this option overrides the FDATool setting for the
quantization parameter Cast signals before accum.

4 Click Apply to register the change or OK to register the change and close
the dialog.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property CastBeforeSum to cast input values to the result
type for addition and subtraction operations. The setting of this property
overrides the FDATool setting for the quantization parameter Cast signals
before accum.

3-53

3 Generating HDL Code for a Filter Design

Setting Optimizations

The Filter Design HDL Coder provides options for optimizing generated filter
HDL code. You can optimize the code in a general sense by suppressing

bit compatibility with MATLAB. Options are also available for optimizing
coefficient multipliers and the final summation method used for FIR filters.

Code optimization options are listed in the lower half of the HDL filter pane
of the Generate HDL dialog, as highlighted in the screen display below.

. Generate HDL (Direct-Form FIR, order = 50, =10 =]
—HOL fitter

Filter target language:

Marre: Jritter

Target directory: |hd|3rc

Reset type: Asynchronous - Reset aszerted level:
Coeff muttipliers: IMuItipIier - I FIF acder style: ILinear b I

¥ Optimized for HOL
More Cptions .. |

Note Some of the optimization settings generate HDL code that produces
numeric results that differ from results produced by the quantized filter
function.

The following sections discuss the various optimization options in more detail:

* “Optimizing Generated Code for HDL” on page 3-55

® “Optimizing Coefficient Multipliers” on page 3-55

® “Optimizing Final Summation for FIR Filters” on page 3-57

* “Optimizing the Clock Rate with Pipeline Registers” on page 3-58
e “Setting Optimizations for Synthesis” on page 3-59

3-54

Setting Optimizations

Optimizing Generated Code for HDL

By default, the Filter Design HDL Coder produces code that maintains bit
compatibility with the numeric results produced by the specified quantized
filter in MATLAB. If you need to generate HDL code that is slightly optimized
for clock speed or space requirements, you can do so at the cost of the Filter
Design HDL Coder:

* Making tradeoffs concerning data types
® Avoiding extra quantization

® Generating code that produces numeric results that are different than the
filter results produced by MATLAB

To optimize generated code for clock speed or space requirements and
suppress bit compatibility with MATLAB,

1 Select Optimize for HDL in the HDL filter pane of the Generate HDL
dialog.

2 Consider setting an error margin for the generated test bench. The error
margin is the number of least significant bits the test bench will ignore
when comparing the results. To set an error margin,

a Click Test Bench Options in the Test Bench Types pane of the
Generate HDL dialog. The Test Bench Options dialog appears.

b Specify an integer in the Error margin (bits) text field that indicates
an acceptable minimum number of bits by which the numeric results
can differ before the coder issues a warning.

3 Continue setting other options or click Apply or OK to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property OptimizeForHDL to suppress bit compatibility
with MATLAB.

Optimizing Coefficient Multipliers
By default, the Filter Design HDL Coder produces code that includes

coefficient multiplier operations. If necessary, you can optimize these
operations such that they decrease the area used and maintain or increase

3-55

3 Generating HDL Code for a Filter Design

3-56

clock speed. You do this by instructing the coder to replace multiplier
operations with additions of partial products produced by canonical signed
digit (CSD) or factored CSD techniques. These techniques minimize the
number of addition operations required for constant multiplication by
representing binary numbers with a minimum count of nonzero digits.
The amount of optimization you can achieve is dependent on the binary
representation of the coefficients used.

Note When you apply CSD or factored CSD techniques, the generated test
bench can produce numeric results that differ from those produced by the
original MATLAB filter function, unless no rounding or saturation occurs

To optimize coefficient multipliers,

1 Select CSD or Factored-CSD from the Coeff multipliers menu in the HDL
filter pane of the Generate HDL dialog.

2 Consider setting an error margin for the generated test bench to account
for numeric differences. The error margin is the number of least significant
bits the test bench will ignore when comparing the results. To set an error
margin,

a Click Test Bench Options in the Test Bench Types pane of the
Generate HDL dialog. The Test Bench Options dialog appears.

b Specify an integer in the Error margin (bits) text field that indicates
an acceptable minimum number of bits by which the numeric results
can differ before the coder issues a warning.

¢ Click Apply to register the change or OK to register the change and
close the dialog.

3 Continue setting other options or click Apply or OK to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property CoeffMultipliers to optimize coefficient
multipliers with CSD techniques.

Setting Optimizations

Optimizing Final Summation for FIR Filters

If you are generating HDL code for an FIR filter, consider optimizing the final
summation technique to be applied to the filter. By default, the Filter Design
HDL Coder applies linear adder summation, which is the final summation
technique discussed in most DSP text books. Alternatively, you can instruct
the coder to apply tree or pipeline final summation. When set to tree mode,
the coder creates a final adder that performs pair-wise addition on successive
products that execute in parallel, rather than sequentially. Pipeline mode
produces results similar to tree mode with the addition of a stage of pipeline
registers after processing each level of the tree.

In comparison,

® The number of adder operations for linear and tree mode are the same, but
the timing for tree mode might be significantly better due to summations
occurring in parallel.

® Pipeline mode optimizes the clock rate, but increases the filter latency
by the base 2 logarithm of the number of products to be added, rounded
up to the nearest integer.

¢ Linear mode ensures numeric accuracy in comparison to the original
MATLAB filter function. Tree and pipeline modes can produce numeric
results that differ from those produced by the filter function.

To change the final summation to be applied to an FIR filter,

1 Select one of the following options in the HDL filter pane of the Generate
HDL dialog:
For... Select...
Linear mode (the default) Linear from the FIR adder style menu
Tree mode Tree from the FIR adder style menu
Pipeline mode The Add pipeline registers check box
2 If you specify tree or pipelined mode, consider setting an error margin for
the generated test bench to account for numeric differences. The error

margin is the number of least significant bits the test bench will ignore
when comparing the results. To set an error margin,

3-57

3 Generating HDL Code for a Filter Design

3-58

a Click Test Bench Options in the Test Bench Types pane of the
Generate HDL dialog. The Test Bench Options dialog appears.

b Specify an integer in the Error margin (bits) text field that indicates
an acceptable minimum number of bits by which the numeric results
can differ before the coder issues a warning.

¢ Click Apply to register the change or OK to register the change and
close the dialog.

3 Continue setting other options or click Apply or OK to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property FIRAdderStyle or AddPipelineRegisters to
optimize the final summation for FIR filters.

Optimizing the Clock Rate with Pipeline Registers

You can optimize the clock rate used by filter code by applying pipeline
registers. Although the registers increase the overall filter latency and space
used, they provide significant improvements to the clock rate. These registers
are disabled by default. When you enable them, the coder adds registers
between stages of computation in a filter.

For... Pipeline Registers Are Added
Between...

FIR, Antisymmetric FIR, and Symmetric Each level of the final

FIR filters summation tree

Transposed FIR filters Coefficient multipliers and
adders

IIR filters Sections

For example, for a sixth order IIR filter, the coder adds two pipeline registers,
one between the first and second section and one between the second and
third section.

For FIR filters, the use of pipeline registers optimizes filter final summation.
For details, see “Optimizing Final Summation for FIR Filters” on page 3-57.

Setting Optimizations

Note The use of pipeline registers in FIR, antisymmetric FIR, and
symmetric FIR filters can produce numeric results that differ from those
produced by the original MATLAB filter function because they force the tree
mode of final summation.

To use pipeline registers,

1 Select the Add pipeline registers option in the HDL filter pane of the
Generate HDL dialog.

2 For FIR, antisymmetric FIR, and symmetric FIR filters, consider setting
an error margin for the generated test bench to account for numeric
differences. The error margin is the number of least significant bits the
test bench will ignore when comparing the results. To set an error margin:

a Click Test Bench Options in the Test Bench Types pane of the
Generate HDL dialog. The Test Bench Options dialog appears.

b Specify an integer in the Error margin (bits) text field that indicates
an acceptable minimum number of bits by which the numerical results
can differ before the coder issues a warning.

¢ Click Apply to register the change or OK to register the change and
close the dialog.

3 Continue setting other options or click Apply or OK to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property AddPipelineRegisters to optimize the filters
with pipeline registers.

Setting Optimizations for Synthesis

The following table maps various synthesis goals with optimization settings
that can help you achieve those goals. Use the table as a guide, while
understanding that your results may vary depending on your synthesis
target. For example, if you target FPGAs with built-in multipliers, the benefit
of using CSD or factored CSD can be quite small until you utilize all the
built-in multipliers. In an ASIC application, where the ability to route the

3-59

3 Generating HDL Code for a Filter Design

3-60

design largely controls the speed, the difference in speed between a linear and
tree FIR adder style can be negligible. It may be necessary for you to combine
various option settings to achieve your synthesis goals.

To...

Slightly increase
the clock speed and
slightly decrease the
area used

To increase the
clock speed while
maintaining the area
used

Significantly increase
the clock speed while
increasing overall
latency and the area
used

Decrease the

area used while
maintaining or
increasing clock speed
(depends on binary
representation of
coefficients)

Decrease the area
used (lower than what
is achieved with CSD)
while decreasing the
clock speed

Select...
Optimize for HDL

Tree for FIR adder
style

Add pipeline
registers

CSD for Coefficient
multipliers

Factored CSD
for Coefficient
multipliers

Which...

Removes extra
quantization
operations

Computes final
summation for FIR,
Asymmetric FIR,
and Symmetric FIR
pair-wise in parallel

Adds pipeline
registers and forces
use of the Tree
FIR adder style, as
necessary

Uses shift and add
techniques instead
of multipliers

Uses shift and add
techniques on the
prime factors of
coefficients instead
of multipliers

At the Cost of...

Not remaining bit true to
MATLAB.

Generally, not remaining
bit true to MATLAB.
Bit true to MATLAB
only if no rounding or
saturation occurs during
final summation.

Not remaining bit true to
MATLAB when the FIR
adder style is forced to
Tree.

Generally, not remaining
bit true to MATLAB. Bit
true to MATLAB only if
no rounding or saturation
occurs.

Generally, not remaining
bit true to MATLAB. Bit
true to MATLAB only if
no rounding or saturation
occurs.

Customizing the Test Bench

Customizing the Test Bench

In addition to generating HDL code for your quantized filter, the Filter Design
HDL Coder generates a test bench you can use to verify filter results. The type
of test bench, configurations for clock and reset signals, and the test stimuli
will vary depending on your development environment and the filter you are
testing. The following sections explain how to customize a test bench by

* “Renaming the Test Bench” on page 3-61

® “Specifying a Test Bench Type” on page 3-62

e “Configuring the Clock” on page 3-65

® “Configuring Resets” on page 3-67

e “Setting a Hold Time for Data Input Signals” on page 3-69

® “Setting an Error Margin for Optimized Filter Code” on page 3-70

e “Setting Test Bench Stimuli” on page 3-72

Renaming the Test Bench

As discussed in “Customizing Reset Specifications” on page 3-26, the Filter
Design HDL Coder derives the name of the test bench file from the name
of the quantized filter for which the HDL code is being generated and the
postfix _tb. The file type extension depends on the type of test bench that is
being generated.

If the Test Bench Is a... The Extension Is...

Verilog file Defined by the Verilog file extension text
field in the HDL filter pane of the Generate
HDL dialog

VHDL file Defined by the VHDL file extension text
field in the HDL filter pane of the Generate
HDL dialog

ModelSim DO file .do

The file is placed in the directory defined by the Target directory option in
the HDL Filter pane of the Generate HDL dialog.

3-61

3 Generating HDL Code for a Filter Design

3-62

To specify a test bench name, enter the name in the Name text field of the
Test bench types pane, as shown in the following dialog.

=) Generate HDL {Direct-Form FIR, order = 50) B -10] =]
__ HOL fitter
Filter target lanousge: IVHDL d
Mame:; Jritter

Target directory: Jhelisrc I

Reset type: IAgynchrgngug d Rezet asserted level: I.i\.dive-high = I
Coeff multipliers: IMurtipIier d FIR acder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

More Options .. |

[¥ Impulze responze

__Test hench types

Mame: [fiter_th

[¥ Step response

[+ “HOL file [¥ Ramp response
I verlog fle [+ Chirp response

[# White noise response
[~ ModelSim o file [User defined response

Test Bench Options ... I |

Ok I Cancell Help I Apply

Note If you enter a string that is a VHDL or Verilog reserved word, the coder
appends the reserved word postfix to the string to form a valid identifier.

Command Line Alternative: Use the generatetb function with the
property TestBenchName to specify a name for your filter’s test bench.

Specifying a Test Bench Type
The Filter Design HDL Coder can generate three types of test benches:

Customizing the Test Bench

e A VHDL file that you can simulate in a simulator of choice
® A Verilog file that you can simulate in a simulator of choice

¢ ModelSim DO file to be used for simulation in the ModelSim environment

Note Due to differences in representation of double-precision data in
VHDL and Verilog, restrictions apply to the types of test benches that are
interoperable. The following table shows valid and invalid test bench type
and HDL combinations.

Test Bench Type VHDL Verilog
VHDL Valid Invalid
Verilog Invalid Valid
ModelSim .do Not recommended* Valid

*Errors may be reported due to string comparisons.

These restrictions do not apply for fixed-point filters.

By default, the coder produces a VHDL or Verilog file only, depending on
your language selection. If you want to generate additional test bench files,
select the desired test bench types listed in the Test bench types pane of the
Generate HDL dialog. The following dialog specifies that the coder generate
VHDL and ModelSim DO test bench files.

3-63

3 Generating HDL Code for a Filter Design

<) Generate HDL (Direct-Form FIR, order = 50)

— HOL fiter

=101]

Fitter target language: IVHDL

Mame: |fi|ter

Target directory: Jhallsre

Reset type: IAsynchronouS h I
Coeff multipliers: IMuItipIier = I

[~ Cptirize for HOL

More Cptions .. |

Rezet asserted level: IActive-high - I
FIR: adder style: ILinear - I

[~ Add pipeling redisters

— Test hench types

Matne: |fi|ter_tb

v WHEL file
[~ werilog file

[ModelSim do file

Test Bench Options ... I

[Impulze response

[Step response

[+ Ramp response

[¥ Chirp response

[+ \White noise response

[~ User defined response

QK I Cancell

Help I

If you choose to generate a ModelSim DO file, you have the option of specifying
simulator flags. For example, you might need to specify a specific compiler

version. To specify the flags,

1 Click Test Bench Options in the Test bench types pane of the Generate

HDL dialog. The Test Bench Options dialog appears.

2 Type the flags of interest in the Simulator flags text box. The following
dialog specifies that ModelSim use the —93 compiler option for compilation.

3-64

Customizing the Test Bench

J. Test Bench Dptions BT [] 24

¥ Force clock enable

Clock enahle value: I.i\.dive-high - I

[Force clock

Clock high time (hs): |5
Clock low time (ns): |5

[Force reset

Reset value: IActive-IDW s I
Hald Tirne (niz): |2

Errar margin (hits): |4
Sirnulator flags: |-93

Ok I Cancell Help I Appl\;l

3 Click Apply to register the change or OK register the change and close
the dialog.

Command Line Alternative: Use the generatetb function’s TbType
parameter to specify the type of test bench files to be generated.

Configuring the Clock
Based on default settings, the Filter Design HDL Coder configures the clock

for a filter test bench such that it

® Forces clock enable input signals to active high (1)

® Forces clock input signals low (0) for a duration of 5 nanoseconds and high
(1) for a duration of 5 nanoseconds

To change these clock configuration settings,

1 Click Test Bench Options in the Test bench types pane of the Generate
HDL dialog. The Test Bench Options dialog appears.

2 Make the following configuration changes as needed:

3-65

3 Generating HDL Code for a Filter Design

3-66

If You Want to...

Disable the forcing of clock enable
input signals

Change the clock enable value to
active low (0)

Disable the forcing of clock input
signals

Reset the number of nanoseconds
during which clock input signals
are to be driven low (0)

Reset the number of nanoseconds
during which clock input signals
are to be driven high (1)

Then...

Clear Force clock enable.

Select Active-low from the Clock
enable value menu.

Clear Force clock.

Specify a positive integer in the
Clock low time text field.

Specify a positive integer in the
Clock high time text field.

The following dialog highlights the applicable options.

). Test Bench Options g1 I] 2

[+ Force clock enable
Clock enahble value: I.a.ctive-high - I

[+ Force clock

Clock high time (n=): |5
Clock lowy time (na): |5

[+ Force reset

Feset value: I.i\.dive-low - I
Hald Time (n=): |2

Etrar margin (bits): |4
Sirmulatar flags: I

Ok I Cancell Help I Appl\;l

the dialog.

3 Click Apply to register the change or OK register the change and close

Customizing the Test Bench

Command Line Alternative: Use the generatetb function with
the properties ForceClockEnable, ClockEnableValue, ForceClock,
ClockHighTime, and ClockLowTime to reconfigure the test bench clock.

Configuring Resets

Based on default settings, the Filter Design HDL Coder configures the reset
for a filter test bench such that it

* Forces reset input signals to active high (1).

® Applies a hold time of 2 nanoseconds for reset input signals.

The hold time is the amount of time, after two initial clock cycles, that reset
input signals are to be held past the clock rising edge. The following figure

shows the application of a hold time (t, ;) for reset input signals when the
signals are forced to active high and active low.

Clock

1

1

Reset Input 1
Active High L
1

Reset Input | '/
Active Low I

Note The hold time applies to reset input signals only if the forcing of reset
input signals is enabled.

To change the default reset configuration settings,

3-67

3 Generating HDL Code for a Filter Design

1 Click Test Bench Options in the Test bench types pane in the Generate
HDL dialog. The Test Bench Options dialog appears.

2 Make the following configuration changes as needed:

If You Want to... Then...

Disable the forcing of reset input Clear Force reset.

signals

Change the reset value to active Select Active-1low from the Reset
low (0) value menu.

Reset the hold time Specify a positive integer,

representing nanoseconds, in
the Hold time text field.

The following dialog highlights the applicable options.

J. Test Bench Dptions BT [] 24

¥ Force clock enable

Clock enahle value: I.i\.dive-high - I

[Force clock

Clock high time (hs): |5
Clock low time (ns): |5

[Force reset

Reset value: IActive-IDW s I
Hald Tirne (niz): |2

Errar margin (hits): |4
Sirnulator flags: I

Ok I Cancell Help I Appl\;l

3 Click Apply to register the change or OK register the change and close
the dialog.

3-68

Customizing the Test Bench

Note

¢ The reset value must match the setting of the reset asserted level specified
for the filter.

® The hold time setting also applies to data input signals.

Command Line Alternative: Use the generatetb function with the
properties ForceReset, ResetValue, and HoldTime to reconfigure test bench
resets.

Setting a Hold Time for Data Input Signals

By default, the Filter Design HDL Coder applies a hold time of 2 nanoseconds
for filter data input signals. The hold time is the amount of time that data
input signals are to be held past the clock rising edge. The following figure
shows the application of a hold time (t, ;) for data input signals.

Clock \
I

Data Input ! X

To change the hold time setting,

1 Click Test Bench Options in the Test bench types pane of the Generate
HDL dialog. The Test Bench Options dialog appears.

2 Specify a positive integer, representing nanoseconds, in the Hold time text
field. The following dialog sets the hold time to 3 nanoseconds.

3-69

3 Generating HDL Code for a Filter Design

3-70

) Test Bench Dptions] 2|

[¥ Farce clock enable

Clock enahle value: I.i\.dive-high - I

[¥ Force clock

Clock high time (hs): |5
Clock low time (ns): |5

[¥ Force reset

Reset value: I.i\.dive-high - I
Hald Time (n=): |3

Etrar margin (bits): I
Sirmulatar flags: I

QK I Cancell Helg I Applyl

3 Click Apply to register the change or OK register the change and close
the dialog.

Note The hold time setting also applies to reset input signals, if the forcing
of such signals is enabled.

Command Line Alternative: Use the generatetb function with the
property HoldTime to adjust the hold time setting.

Setting an Error Margin for Optimized Filter Code
Customizations that provide optimizations can generate test bench code that
produces numeric results that differ from those produced by the original
MATLAB filter function. Specifically, these options include

¢ Optimize for HDL

¢ Coeff multipliers

¢ FIR adder style set to Tree

Customizing the Test Bench

* Add pipeline registers for FIR, Asymmetric FIR, and Symmetric FIR
filters

If you choose to use any of these options, consider setting an error margin for
the generated test bench to account for differences in numeric results. The
error margin is the number of least significant bits the test bench will ignore
when comparing the results. To set an error margin,

1 Click Test Bench Options in the Test Bench Types pane of the
Generate HDL dialog. The Test Bench Options dialog appears.

2 Specify an integer in the Error margin text field that indicates an
acceptable minimum number of bits by which the numeric results can
differ before the coder issues a warning. The following dialog sets the
error margin to 3 bits.

). Test Bench Options g1 I] 2

[+ Force clock enable

Clock enahble value: I.a.ctive-high - I

[+ Force clock

Clock high time (n=): |5
Clock lowy time (na): |5

[+ Force reset

Feset value: I.i\.dive-low - I
Hald Time (n=): IS
Etrar margin (bits): |3

Sirmulatar flags: |

Ok I Cancell Help I Appl\;l

3 Click Apply to register the change or OK register the change and close
the dialog.

3-71

3 Generating HDL Code for a Filter Design

Setting Test Bench Stimuli

By default, the Filter Design HDL Coder generates a filter test bench that
includes stimuli appropriate for the given filter. However, you can adjust the
stimuli settings or specify user defined stimuli, if necessary. The following
table lists the types of responses enabled by default.

For Filters... Default Response Types Include...
FIR, FIRT, Symmetric FIR, and Impulse, step, ramp, chirp, and white
Antisymmetric FIR noise

All others Step, ramp, and chirp

To modify the stimuli that the coder is to include in a test bench, enable the
responses of interest listed in the Test bench types pane of the Generate
HDL dialog. The following display highlights this pane of the dialog.

3-72

Customizing the Test Bench

=) Generate HDL {Direct-Form FIR, order = 50) ! -10] =]
__ HOL fitter
Filter target lanousge: IVHDL d
Mame:; Jritter
Target directory: Jhelisrc

Reset type: IAgynchrgngug d Rezet asserted level: I.i\.dive-high = I
Coeff multipliers: IMurtipIier d FIR acder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

More Options .. |

[¥ Impulze responze

__Test hench types

Mame: [fiter_th
[¥ Step response

[+ “HOL file [¥ Ramp response
I verlog fle [+ Chirp response

[# White noise response
[~ ModelSim o file [User defined response

CrEs HERCH BtitRs T I |

Ok I Cancell Help I Applyl

If you select User defined response, you must also specify a MATLAB
expression or function that returns a vector of values to be applied to the
filter. The values specified in the vector are quantized and scaled based on the
filter’s quantization settings.

Command Line Alternative: Use the generatetb function with the
properties TestBenchStimulus and TestBenchUserStimulus to adjust stimuli

settings.

3-73

3 Generating HDL Code for a Filter Design

3-74

Generating the HDL Code

To initiate HDL code generation for a filter and its test bench, click Apply or
OK on the Generate HDL dialog. In addition to initiating code generation,
OK closes the Generate HDL dialog. As the Filter Design HDL Coder
processes the code, a sequence of messages similar to the following appears in
your MATLAB Command Window:

Starting VHDL code generation process for filter: MyFIR
Generating filter.vhd file in: D:\work\FIRFilts

Starting generation of MyFIR VHDL entity

Starting generation of MyFIR VHDL architecture

Successful completion of VHDL code generation process for
filter: MyFIR

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.
Generating VHDL file into D:\work\FIRFilts

Done generating VHDL test bench.

Note The message text varies based on your customization settings
(filenames and location, test bench type, and so on) and the length of the
input stimulus samples varies from filter to filter. For example, the value
3429 in the preceding message sequence is not fixed; the value is dependent
on the filter under test.

Testing a Filter Design

This chapter explains how to apply supported test methods for verifying the
HDL code that Filter Design HDL Coder generates for a filter design. Topics

include the following:
“Overview of the Test Methods” (p.
4-2)

“Testing with an HDL Test Bench”
(p. 4-3)

“Testing with a ModelSim Tcl/Tk DO
File” (p. 4-12)

Provides an overview of the available
test methods

Explains how to test generated filter
HDL code, using generated HDL test
bench code

Explains how to test generated
filter HDL code, using a generated
ModelSim DO file

4 Testing a Filter Design

4-2

Overview of the Test Methods

As explained in “Customizing the Test Bench” on page 3-61, the type of test
bench, configurations for clock and reset signals, error margin, and the
test stimuli will vary depending on your development environment and the
customizations you apply when you generate your design. Depending on the
types of test benches you generate, you can verify your filter design by

e “Testing with an HDL Test Bench” on page 4-3
® “Testing with a ModelSim Tcl/Tk DO File” on page 4-12

Testing with an HDL Test Bench

Testing with an HDL Test Bench

If you customize the Filter Design HDL Coder to generate VHDL or Verilog
test bench code, you can use a simulator of your choice to verify your filter
design. For example purposes, the following sections explain how to apply
generated HDL test bench code by using ModelSim. In summary, you need to
1 Generate the filter and test bench HDL code.

2 Start the simulator.

3 Compile the generated filter and test bench files.

4 Run the test bench simulation.

Note Due to differences in representation of double-precision data in
VHDL and Verilog, restrictions apply to the types of test benches that are
interoperable. The following table shows valid and invalid test bench type
and HDL combinations.

Test Bench Type VHDL Verilog
VHDL Valid Invalid
Verilog Invalid Valid
ModelSim .do Not recommended* Valid

*Errors may be reported due to string comparisons.

These restrictions do not apply for fixed-point filters.

Generating the Filter and Test Bench HDL Code

Use the Filter Design HDL Coder GUI or command line interface to generate
the HDL code for your filter design and test bench. As explained in “Specifying
a Test Bench Type” on page 3-62, the GUI generates a VHDL or Verilog test
bench file by default, depending on your language selection. To specify a
language-specific test bench type explicitly, select the VHDL file or Verilog
file option in the Test bench types pane of the Generate HDL dialog. You

4-3

4 Testing a Filter Design

can specify a number of other test bench customizations, as described in
“Customizing the Test Bench” on page 3-61.

The following dialog shows settings for generating the filter and test bench
files MyFilter.vhd, MyFilter_ tb.vhd, and MyFilter_ tb.v. The dialog
also specifies that the generated files are to be placed in the default target
directory hdlsrc under the current working directory.

=) Generate HDL {Direct-Form FIR, order = 50) -10] =]

__HOL fitter
Fitter target language: IVHDL

Matne: |MyFitter

Target directory: Jhelisrc

Reset type: ISynchronous d Rezet asserted level: I.i\.dive-high = I
Coeff multipliers: IMurtipIier d FIR acder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

__Test hench types

[¥ Impulze responze

Mamme: [MyFitter_th
[¥ Step response

[+ “HOL file [¥ Ramp response
7 Verlog fle [+ Chirp response

[# White noise response
[~ ModelSim o file [User defined response

Test Bench Options ... I |

QK I Cancell Help I Apply

Note The settings for the Reset asserted level option in the HDL filter
pane of the Generate HDL dialog and the Reset value option for Force
reset in the Test Bench Options dialog must match. If you change one of
these options, make sure you adjust the other option accordingly.

4-4

Testing with an HDL Test Bench

After you click OK, the Filter Design HDL Coder displays the following
messages in the MATLAB Command Window:

#it#
#it#
#H##
#H#
#H##

Starting VHDL code generation process for filter: MyFilter
Generating MyFilter.vhd file in: hdlsrc

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture
Successful completion of VHDL code generation process for

filter: MyFilter

#H##
#H##
#H#
#it#
#it#

Hit#
#it#
#it#H
Hit#H
Hit#H

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.
Generating VHDL file MyFilter_tb.vhd in: hdlsrc
Done generating VHDL test bench.

Starting generation of Verilog Test Bench
Generating input stimulus

Done generating input stimulus; length 3429 samples.
Generating Verilog file MyFilter_tb.v in: hdlsrc
Done generating Verilog test bench.

Note The length of the input stimulus samples varies from filter to filter.
For example, the value 3429 in the preceding message sequence is not fixed;
the value is dependent on the filter under test.

If you use the command line interface, you must

® Invoke the functions generatehdl and generatetb, in that order. The order
is important because generatetb takes into account additional latency
or numeric differences introduced into the filter’s HDL code that results
from the following property settings:

4-5

4 Testing a Filter Design

4-6

Property... Set to... Can Affect...
'‘AddInputRegister‘or ‘on’ Latency
'‘AddOutputRegister’

'FIRAdderStyle’ '‘pipeline’ Numeric
computations and
latency

'FIRAdderStyle’ ‘tree’ Numeric
computations

'OptimizeForHDL!' 'off' Numeric
computations

'‘CastBeforeSum' ‘on’ Numeric
computations

‘CoeffMultipliers' ‘csd' or ‘factored-csd' Numeric
computations

® Specify 'VHDL' or 'Verilog' for the TbType parameter. For double-precision
filters, you must specify the type that matches the target language specified
for your filter code.

® Make sure the property settings specified in the invocation of generatetb
match those of the corresponding invocation of generatehdl. You can do
this in one of two ways:

= Omit explicit property settings from the generatetb invocation. This
function automatically inherits the property settings established in the
generatehdl invocation.

= Take care to specify the same property settings specified in the
generatehdl invocation.

You might also want to consider using the function generatetbstimulus to
return the test bench stimulus to the MATLAB Command Window.

For details on the property name and property value pairs that you can
specify with the generatehdl and generatetb functions for customizing the
output, see Chapter 5, “Properties — Categorical List”.

Testing with an HDL Test Bench

Starting the Simulator

After you generate your filter and test bench HDL files, start your simulator.
When you start ModelSim, a screen display similar to the following appears:

7] ModelSim SE PLUS 5.7a ' -3l xj
File Edit W%ew Compile Simulate Tools Window Help

|zmB || sEaE

“Workspace x|

Hame IT_I,Jpe IF'ath ModelSims | —
J]l wital2000 Library $MODEL_TE

=[] i=ee Libray ~ $MODEL_TE

J:ll madelzirm_lib Library FMODEL_TE

[l st Libray ~ $MODEL_TE

J:ll ztd_dewveloperskit Library FMODEL_TE

a1 T [— tAMMCL TC d

< | |

Library 3

|<:N0 Design Loaded= |

After starting the simulator, set the current directory to the directory that
contains your generated HDL files.

Compiling the Generated Filter and Test Bench Files

Using your choice HDL compiler, compile the generated filter and test bench
HDL files. Depending on the language of the generated test bench and the
simulator you are using, you might need to complete some precompilation
setup. For example, in ModelSim, you might choose to create a design library
to store compiled VHDL entities, packages, architectures, and configurations.

The following ModelSim command sequence changes the current directory to
hdlsrc, creates the design library work, and compiles VHDL filter and filter

test bench code. The v1ib command creates the design library work and the

vcom commands initiate the compilations.

cd hdlsrc

vlib work

vcom MyFilter.vhd
vcom MyFilter_tb.vhd

4-7

4 Testing a Filter Design

4-8

Note For filters that have floating-point (double) realizations, you must
specify the vcom command with the -93 option. This is because the test bench
uses the image attribute, which is available only in VHDL-93.

The following screen display shows this command sequence and informational
messages displayed during compilation:

= ModelSim SE PLUS 5.7a — ol x|

File Edit Wiew Compile Simulate Tools Window Help

lzeal|engs

“Workspace x|
Mame | Type | Path ModelSim> cd vhdlsre fizt
e[l vital2000 Library $MODEL_TE | || ModelSim> wib wark
e[l ie=e Library $MODEL_TE | || ModelSim> wcom MyFilter.vhd
&l modelsim_ib Library $MODEL_TE | ||# Model Technology ModelSim SE veom 5.7a Campil
=9 TEE Library $MODEL_TE | ||er 200212 .Jan 32003

. . # -- Loading package standard
m zhd_deweloperskit L!b[al_',l $MODEL_TE # - Loading packags std logic. 1164
J:ll FYNOpEYs Library $MODEL_TE | | |4 -- Loading package numeric_std
J:Il werilog Library $MODEL_TE | ||# -- Compiling entity myfilker
-- Compiling architecture it of myfilker
todelSim: woom MeFilker_tb,vhd

Model Technology ModelSim SE weom 5.7a Compil
er 200212 Jan 32003

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_ztd

-- Carmpiling entity ryfilker_th

-- Compiling architecture test of myfiler_tb

-- Loading entity rigfilker

HHEHTH

1 I | _.I
Library ModelSir |

|<:ND Design Loaded=> | 2

Ll

Running the Test Bench Simulation

Once your generated HDL files are compiled, load and run the test bench.
The procedure for doing this varies depending on the simulator you are using.
In ModelSim, you load the test bench for simulation with the vsim command.
For example:

Testing with an HDL Test Bench

vsim work.MyFilter_tb

The following ModelSim display shows the results of loading
work.MyFilter_tb with the vsim command:

= ModelSim SE PLUS 5.7a

=101]

File Edit Wiew Compile Simulate Tools Window Help
|z2R||cmEH || woslEIEE B
“Workspace x|
Instance IDesign Lt IDesign ModelSimz wsim work, MyFilter_tb L=
E_T myfilter_th e e (N | | | waimn work. MyFilter_th o
il fleTt] Archit # Loading [/applications, M odelSimAwin32,. /etd. standard
W myfiter myfiberr TEPIEL 1 # | nading D: /applications/ModelSimwind2/ieee.std_logic_1
B numeric_std numeric_std Packac| | 1164[body)
W std logic 1164 std logic_.. Packac| [|# Loading D:/applications/MaodelSim/win3Z/.. fieee. numeric_std
T o | | [body)
B standard standard Packag # Loading waork. myfilker_thtest]
Loading waork, mfilber{rt])
«| | |
Library | zinn | Files WSIM 20 | j
|N0w: 0 ns Delta: O |sim:fmyﬂlter_tb w

Once the design is loaded into the simulator, consider opening a display
window for monitoring the simulation as the test bench runs. For example, in
ModelSim, you might use the add wave * command to open a wave window

to view the results of the simulation as HDL waveforms.

To start running the simulation, issue the appropriate simulator command.
For example, in ModelSim, you can start a simulation with the run -all

command.

The following ModelSim display shows the add wave * command being used
to open a wave window and the -run all command being used to start a

simulation:

4-9

4 Testing a Filter Design

4-10

Z]ModelSim SE PLUS 5.7a _ 1o x|

File Edit Yiew Compile Simulate Tools Window Help

|SBR || G || B mnnsELEE B P

Workspace x|

Irisk Dot [# wzinn wark. MyFilter_th J
RITEE I St I =REd # Loading D /applications Mt odelSimAwin32/. /ztd. standard

I}E myfilter_th QLT REEIER | |4 Loading D: /applications/ModelSim win32/.. fieee.std_logic_11

W _myfiter myfitert] Architec) ||G4{body)
B rumeric_std numeric_std Packag # Loading D: /applications ModelSimdAwind2 /.. feee. numenic_std|
i " biody]
Bl std_logic 1164 std logic_... Packag| ||4 Loading wark. myflter_th(test)
W standard standard Packag| ||# Loading work.rngfilker(it]
WSIM 11> add wave *
WSIM 12 run -all

** Failure: ** Test Complete. #*
Time: 34332 ne lteration: 0 Process: Amyfilter_tb/Afilker_in_ge
n File: MuFilker_th.vhd

i i _'I # Break at MyFilter_th vhd line 7027
Library | zim | Files WS 13 | =
|N0w: 34332 ns Delta: D |sim:a’myﬂlter_tb

A

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design HDL
Coder. For example, a number of HDL customization options allow you to
specify settings that can produce numeric results that differ from those
produced by the original MATLAB filter function. For HDL test benches, the
Filter Design HDL Coder compares the results and if they differ, excluding
the specified error margin, returns an error message similar to the following:

Error in filter test: Expected xxxxxxxx Actual XXXXXXXX

You must determine whether the actual results are expected based on the
customizations you specified when generating the filter HDL code.

Note The failure message that appears in the preceding display is not
flagging an error. If the message includes the string Test Complete, the
test bench has successfully run to completion. The Failure part of the
message is tied to the mechanism the Filter Design HDL Coder uses to end
the simulation.

Testing with an HDL Test Bench

The following wave window shows the simulation results as HDL waveforms.

==t wave - default -10] =l

File Edit View Insert Format Tools Wwindow
EEHES s BEA L K 1«

A h |

(N mf ® @ @ B | EF | ELEEE 3

A |

MHow 332 s

Curzor 1 Ons

Jl [] | 2R =

| 33382 ns to 34382 ns |

» -

4-11

4 Testing a Filter Design

Testing with a ModelSim Tcl/Tk DO File

If you customize the Filter Design HDL Coder to generate a ModelSim Tcl/Tk
DO file test bench, you must use ModelSim to test and verify your filter
design. When you choose this test bench method, you need to

1 Generate the filter and test bench HDL code.
2 Start ModelSim.

3 Compile the generated filter file.

4 Execute the ModelSim DO file.

Generating the Filter HDL Code and Test Bench DO
File

Use the Filter Design HDL Coder GUI or command line interface to generate
the HDL code for your filter design and test bench. The GUI generates a
ModelSim DO file test bench if you select the ModelSim .do file option in
the Test bench types pane of the Generate HDL dialog. You can specify

a number of other test bench customizations, as described in “Customizing
the Test Bench” on page 3-61.

The following dialog shows settings for generating the filter and test bench
files MyFilter.vhd and MyFilter_ tb.do. The dialog also specifies that the
generated files are to be placed in the default target directory hdlsrc under
the current working directory.

4-12

Testing with a ModelSim Tel/Tk DO File

=) Generate HDL {Direct-Form FIR, order = 50) -10] =]
__HOL fitter
Filter target lanousge: IVHDL d
Matne: |MyFitter
Target directory: Jhelisrc

Reset type: ISynchronous d Rezet asserted level: I.i\.dive-high = I
Coeff multipliers: IMurtipIier d FIR acder style: ILinear = I

[~ Cptimize for HOL [~ Add pipeline registers

__Test hench types

[¥ Impulze responze

Mamme: [MyFitter_th
[¥ Step response

[~ “HOL file [¥ Ramp response
I Verlog fie [+ Chirp response

[# White noise response
[¥ ModelSim o file [User defined response

Test Bench Options ... I |

Ok I Cancell Help I Apply

Note The settings for the Reset asserted level option in the HDL filter
pane of the Generate HDL dialog and the Reset value option for Force
reset in the Test Bench Options dialog must match. If you change one of
these options, make sure you adjust the other option accordingly.

After you click OK, Filter Design HDL Coder displays the following messages
in the MATLAB Command Window:

Starting VHDL code generation process for filter: MyFilter
Generating MyFilter.vhd file in: hdlsrc

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture

Successful completion of VHDL code generation process for

4-13

4 Testing a Filter Design

4-14

filter: MyFilter

Starting generation of ModelSim .do file Test Bench
Generating input stimulus

Done generating input stimulus; length 3429 samples.
Generating ModelSim .do file MyFilter_tb in: hdlsrc
Done generating ModelSim .do file test bench.

Note The length of the input stimulus samples varies from filter to filter.
For example, the value 3429 in the preceding message sequence is not fixed;
the value is dependent on the filter under test.

If you use the command line interface, you must

® Invoke the functions generatehdl and generatetb, in that order. The order

is important because generatetb takes into account latency or numeric
differences introduced into the filter’s HDL code that results from the
following property settings:

Property... Set to... Can Affect...
'‘AddInputRegister‘or ‘on’ Latency
'‘AddOutputRegister’

'FIRAdderStyle’ 'pipeline’ Numeric
computations and
latency

'FIRAdderStyle’ ‘tree’ Numeric
computations

'OptimizeForHDL!' 'off Numeric
computations

'‘CastBeforeSum' ‘'on' Numeric
computations

‘CoeffMultipliers' ‘csd' or ‘factored-csd' Numeric
computations

® Specify 'ModelSim' for the ThType parameter.

Testing with a ModelSim Tel/Tk DO File

® Make sure the property settings specified in the invocation of generatetb
match those of the corresponding invocation of generatehdl. You can do
this in one of two ways:

= Omit explicit property settings from the generatetb invocation. This
function automatically inherits the property settings established in the
generatehdl invocation.

= Take care to specify the same property settings specified in the
generatehdl invocation.

You might also want to consider using the function generatetbstimulus to
return the test bench stimulus to the MATLAB Command Window.

For details on the property name and property value pairs that you can
specify with the generatehdl and generatetb functions for customizing the
output, see Chapter 5, “Properties — Categorical List”.

Starting ModelSim

After you generate your filter and test bench HDL files, start ModelSim. A
screen display similar to the following appears:

[ModelSim SE PLUS 5.7a =101 x]
File Edit W%ew Compile Simulate Tools Window Help
znma|enas

“Workspace x|

MHame IT_I,Jpe IF'ath ModelSims | —

[l vitaz000 Library $MODEL_TE

=[] i=ee Libray ~ $MODEL_TE

[l rodelim_lib Library $MODEL_TE

[l st Library $MODEL_TE

i} #d_developerskit Libray $MODEL_TE

[aa L LI — [T— +AMRCL TC d

. |] Is

Library j
|<:N0 Design Loaded= | .

After starting the simulator, set the current directory to the directory that
contains your generated filter and test bench files.

4-15

4 Testing a Filter Design

4-16

Compiling the Generated Filter File

Using your choice HDL compiler, compile the generated filter HDL file. The
test bench DO file looks for your compiled HDL elements in a design library
named work. The design library stores the compiled HDL components. If the
design library work does not exist, you can create it by setting the current
directory to hdlsrc and then issuing the command v1ib work. Once the
library exists, you can use the ModelSim compiler to compile the filter’s HDL
file.

The following ModelSim command sequence changes the current directory to
hdlsrc, creates the design library work, and compiles filter VHDL code:

cd hdlsrc
vlib work
vcom MyFilter.vhd

Note For VHDL filter code that has floating-point (double) realizations, you
must specify the vcom command with the -93 option. This is because the test
bench uses the image attribute, which is available only in VHDL-93.

The following screen display shows this command sequence and informational
messages displayed during compilation:

Testing with a ModelSim Tel/Tk DO File

= ModelSim SE PLUS 5.7a i ol 53
File Edit Wiew Compile Simulate Tools Window Help
EREETEY
“Workspace x|
Marne | Type | Path todelSim: cd vhdlsre L
[l vital2000 Library $MODEL_TE | || MadelSim> vib wark
-1l ieee Library $MODEL_TE | || ModelSime voam MyFiter, vhd
-]l madelsim_ib Library ~ $MODEL_TE | ||# Madel Technology MadelSim SE voom 5 7a Compil
=9 TEE Liorary SMODEL_TE| et 2ED2.d1.2 Jan l3Q2003 trd
. ; - Loading package standar
m zhd_deweloperskit L!b[al_',l $MODEL_TE # - Loading packags std logic. 1164
J:ll FYNOpEYs Library $MODEL_TE | | |4 -- Loading package numeric_std
J:Il werilog Library $MODEL_TE | ||# -- Compiling entity myfilker
-- Compiling architecture it of myfilker
< | 21 | Modsising | i
Library j
|<:ND Design Loaded=> | p

Execute the ModelSim DO File

Once your filter’s HDL file is compiled, execute the generated test bench
DO file. The DO file

1 Loads the compiled filter for simulation.

2 Opens a wave window and populates it with filter signals.

3 Applies stimulus to filter signals with force commands.

4 Compares filter output to expected results.

You can execute the DO file by using the ModelSim do command or the Tcl
source command. The following ModelSim display shows how to use the

do command.

4-17

4 Testing a Filter Design

= ModelSim SE PLUS 5.7a

File Edit Wiew Compile Simulate Tools Window Help

=101]

Workspace x|
Instance | Design Unit | Desian| || MadelSims da MyFilter_th da i
b | myfilter e I e, | | | waim work. MyFilter o
i std numenic std Packar # Loading D:/applications,ModelSimdwin32/. /ztd standard
B numeric_s - £ | |# Loading D: /applicationsModelSim/win32.. fieee. std_lagic_1
W std_logic_1164 std logic .. Packac) ||164[body)
H standard standard Packar| ||# Loading D:/applications/ModelSim/win32/.. iees. numeric_std
[bBondy]
Loading waork, mfilber{rt])
3429 vectars
A [B
Librarg | zim | Filez j
|NDW: 10552 ns Delta: O |sim:a’myﬂlter =

The test bench DO script displays the simulation results in a wave window
that appears as follows:

== wave - default

Fil= Edit ‘iew Insert Format Tools window

=10l]

EEE& YR HA

Jmy

Curzor 1

 hX e ivm |Q QMK

DURSRVSRVRERSHSRVSRV O RANV VDR DRNORNORS SRS RN PRSVREVRADONVORSVRSVROSRNORORSORSEHVRDRAN
BEREDRETFOIROEVEVRSVREVROIDVORERSVRVREVROINORFVEROERDRRBRNORNORRERERORRDIVRVRETNSPRPERHRSY

LA

[]

=

| 3502 ns to 4502 ns |

i
B
P

4-18

Testing with a ModelSim Tel/Tk DO File

Note The Filter Design HDL Coder adjusts the wave form such that it is
appropriate for the specified filter output settings.

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. For example, a number of HDL customization options allow
you to specify settings that can produce numeric results that differ from
those produced by the original MATLAB filter function. The Filter Design
HDL Coder compares the results and, if they differ, returns an error message
similar to the following:

Error in filter test: Expected xxxxxxxx Actual XXXXXXXX

Note You cannot specify an error margin for ModelSim DO file test benches
like you can for HDL test benches. The Filter Design HDL Coder returns an
error if the expected and actual values do not match exactly.

You must determine whether the actual results are expected based on the
customizations you specified when generating the filter HDL code.

4-19

4 Testing a Filter Design

4-20

Properties — Categorical
List

“Language Selection Properties” (p.

5-2)

“File Naming and Location
Properties” (p. 5-2)

“Reset Properties” (p. 5-2)

“Header Comment and General
Naming Properties” (p. 5-3)

“Port Properties” (p. 5-4)

“Advanced Coding Properties” (p.
5-4)

“Optimization Properties” (p. 5-6)
“Test Bench Properties” (p. 5-6)

Lists properties for selecting the
language of the generated HDL code

Lists properties that name and
specify the location of generated files

Lists reset properties

Lists header comment and general
naming properties

Lists port properties

Lists advanced HDL coding
properties

Lists optimization properties

Lists test bench properties

5 Properties — Categorical List

Language Selection Properties

TargetLanguage Specify the HDL language to use for
the generated filter code

File Naming and Location Properties

Name Name a VHDL entity or Verilog
module for the filter and the file that
is to contain the generated HDL code

TargetDirectory Identify the directory into which
generated output files are to be
written

VHDLFileExtension Specify the string to be used as the
file type extension for generated
VHDL files

VerilogFileExtension Specify the string to be used as the
file type extension for generated
Verilog files

Reset Properties

ResetAssertedLevel Specify the asserted (active) level of
the reset input signal

ResetType Specify whether an asynchronous
or synchronous reset style is to be
used when generating HDL code for
registers

5-2

Header Comment and General Naming Properties

Header Comment and General Naming Properties

ClockProcessPostfix

CoeffName

EntityConflictPostfix

PackagePostfix

ReservedWordPostfix

SplitArchFilePostfix

SplitEntityArch

SplitEntityFilePostfix

Specify a string to be appended to
HDL clock process names

Specify a string to be used as the
prefix for filter coefficient names

Specify a string to be appended to
duplicate VHDL entity or Verilog
module names

Specify a string to be appended to
the specified filter name to form the
name of a VHDL package file

Specify a string to be appended to
strings that you specify with other
options that are VHDL or Verilog

reserved words

Specify a string to be appended to
the specified name to form the name
of the file that is to contain the
filter’s VHDL architecture

Specify whether the generated
VHDL entity and architecture code
is to be included in a single VHDL
file or separate files

Specify a string to be appended to
the specified filter name to form the
name of the file that is to contain the
filter’s VHDL entity

5-3

5 Properties — Categorical List

5-4

Port Properties

AddInputRegister
AddOutputRegister

ClockEnableInputPort

InputPort

InputType

OutputPort

OutputType

ResetInputPort

Advanced Coding Properties

BlockGenerateLabel

CastBeforeSum

Specify whether an extra register
is to be added to the HDL code for
filter input

Specify whether an extra register
is to be added to the HDL code for
filter output

Name the HDL port for the filter’s
clock enable input signals

Name the HDL port for a filter’s
input signals

Specify the HDL data type for the
filter’s input port

Name the HDL port for a filter’s
output signals

Specify the HDL data type for the
filter’s output port

Name the HDL port for a filter’s
reset input signals

Specify a string to be appended to
block labels used for HDL GENERATE
statements

Specify whether input values for
addition and subtraction operations
are to be type cast before the
operations occur

Advanced Coding Properties

InitializeRealSignals

InlineConfigurations

InstanceGenerateLabel

LoopUnrolling

OutputGenerateLabel

SafeZeroConcat

ScaleWarnBits

UseAggregatesForConst

UseRisingEdge

Specify whether signals of type REAL
are to be declared with an initial
value of 0.0

Specify whether generated
VHDL code is to include inline
configurations

Specify a string to be appended to
instance section labels in VHDL
GENERATE statements

Specify whether VHDL FOR and
GENERATE loops are to be unrolled
and excluded from the generated
VHDL code

Specify a string that labels an
output assignment block for VHDL
GENERATE statements

Specify the syntax to be used
in the generated VHDL code for
concatenated zeros

Control whether the coder generates
a warning for scale values that are
below a specified numeric threshold
relative to the input data format

Specify whether all constants should
be represented by aggregates,
including constants that are less
than 32 bits

Specify the VHDL coding style to be
used to check for rising edges when
operating on registers

5-5

5 Properties — Categorical List

UseVerilogTimescale

UserComment

Optimization Properties

AddPipelineRegisters

CoeffMultipliers

FIRAdderStyle

OptimizeForHDL

Test Bench Properties

ClockEnableValue
ClockHighTime

ClockInputPort

5-6

Specify whether generated Verilog
code can include compiler “timescale
directives

Specify a string to be added as
a comment line in the header of
generated filter and test bench files

Optimize the clock rate used by filter
code by adding pipeline registers

Specify the technique to be used
for processing coefficient multiplier
operations

Specify a final summation technique
to be used for FIR filters

Specify whether generated HDL
code is to be optimized for specific
performance or space requirements

Specify the constant value to which
a test bench is to force clock enable
input signals

Specify the number of nanoseconds
during which a test bench is to drive
the clock input signals high (1)

Name the HDL port for the filter’s
clock input signals

Test Bench Properties

ClockLowTime

ErrorMargin

ForceClock

ForceClockEnable

ForceReset

HoldTime

ResetValue

SimulatorFlags

TestBenchName

TestBenchStimulus

TestBenchUserStimulus

Specify the number of nanoseconds
during which a test bench is to drive
clock input signals low (0)

Specify an error margin for HDL
language-based test benches

Specify whether the test bench is to
force clock input signals

Specify whether the test bench is to
force clock enable input signals

Specify whether the test bench is to
force reset input signals

Specify the hold time for filter data
input signals and forced reset input
signals

Specify the constant value to which
the test bench is to force reset input
signals

Specify simulator flags that are to be
applied to your generated test bench

Name a VHDL test bench entity or
Verilog module and the file that is to
contain test bench code

Specify the input stimuli the test
bench is to apply to the filter

Specify a user-defined MATLAB
function that returns a vector of
values that the test bench is to apply
to the filter

5-7

5 Properties — Categorical List

5-8

Properties — Alphabetical
List

AddInputRegister

6-2

Purpose

Settings

See Also

Specify whether an extra register is to be added to the HDL code for
filter input

‘on' (default)

‘off'

Add an extra input register to the filter’s generated HDL code.
This is the default.

The code declares a signal named input_register and includes a
PROCESS block similar to the block below. Names and meanings
of the timing parameters (clock, clock enable, and reset) and the
coding style that checks for clock events may vary depending on
other property settings.

Input_Register_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
input_register <= (OTHERS => '0');
ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1" THEN
input_register <= input_typeconvert;
END IF;
END IF;
END PROCESS Input_Register_Process ;

Omit the extra input register from the filter’s generated HDL
code.

You might consider omitting the extra register if you are
incorporating the filter into HDL code that already has a source
for driving the filter. You might also consider not using the extra
register if the latency it introduces to the filter is not tolerable.

AddOutputRegister

AddOutputRegister
|

Purpose Specify whether an extra register is to be added to the HDL code for
filter output

Settings ‘'on’ (default)
Add an extra output register to the filter’s generated HDL code.
This is the default.

The code declares a signal named output_register and includes
a PROCESS block similar to the block below. Names and meanings
of the timing parameters (clock, clock enable, and reset) and the

coding style that checks for clock events may vary depending on

other property settings.

Output_Register_ Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
output_register <= (OTHERS => '0');
ELSIF clk'event AND clk = '1'" THEN
IF clk_enable = '1" THEN
output_register <= output_typeconvert;
END IF;
END IF;
END PROCESS Output_Register_Process ;

'off'
Omit the extra output register from the filter’s generated HDL
code.

You might consider omitting the extra register if you are
incorporating the filter into HDL code that has its own input
register. You might also consider not using the extra register if

the latency it introduces to the filter is not tolerable.

See Also AddInputRegister

6-3

AddPipelineRegisters

6-4

Purpose

Settings

Usage
Notes

Optimize the clock rate used by filter code by adding pipeline registers

on'
Add a pipeline register between stages of computation in a filter.

For... A Pipeline Register Is Added
Between...

FIR Transposed filters Coefficient multipliers and
adders

FIR, Asymmetric FIR, and Levels of a tree-based final

Symmetric FIR filters adder

IIR filters Sections

'off' (default)
Suppress the use of pipeline registers.

Use this option to optimize the clock rate achievable by filter code by
applying pipeline registers. Although the registers add to the overall
filter latency, they provide significant improvements to the clock rate.
These registers are disabled by default. When you enable them, the
coder adds a register between stages of computation. For example,
for a sixth-order IIR filter, the coder adds two pipeline registers, one
between the first and second sections and one between the second and
third sections.

For FIR filters, the use of pipeline registers optimizes filter final
summation. For details, see “Optimizing Final Summation for FIR
Filters” on page 3-57.

Note The use of pipeline registers in FIR, antisymmetric FIR,
and symmetric FIR filters can produce numeric results that differ
from those produced by the original MATLAB filter function because
they force the tree mode of final summation. In such cases, consider
adjusting the test bench error margin.

AddPipelineRegisters
|

See Also CoeffMultipliers, FIRAdderStyle, OptimizeForHDL

6-5

BlockGeneratelLabel

Purpose Specify a string to be appended to block labels used for HDL GENERATE
statements
Settings 'string'

Specify a postfix to be appended to block labels used for HDL
GENERATE statements. The default string is _gen.

See Also InstanceGeneratelLabel, OutputGeneratelLabel

6-6

CastBeforeSum

Purpose Specify whether input values for addition and subtraction operations
are to be type cast before the operations occur

Settings 'on'(default) Select the check box to
Type cast input values in addition and subtraction operations to
the result type before operating on the values. This is the default.
This setting produces numeric results that are typical of Simulink
fixed-point results produced by DSP processors.

Note The FDATool sets this option by default. However, the
Filter Design HDL Coder default behavior overrides the FDATool
setting and disables type casting.

'off'
Preserve the types of input values during addition and subtraction

operations and then convert the result to the result type. This is
the MATLAB mode of operation.

See Also InitializeRealSignals, InlineConfigurations, LoopUnrolling,
SafezZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge, UseVerilogTimescale

6-7

ClockEnablelnputPort

6-8

Purpose

Settings

Usage
Notes

See Also

Name the HDL port for the filter’s clock enable input signals

'string’

Name the HDL port for the filter’s clock enable input signals. The

default string is c1k_enable.

For example, if you specify the string 'filter_clock_enable’
for filter entity Hq, the generated entity declaration might look

as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;
filter_clock_enable : 1IN std_logic;
reset : IN std_logic;
filter_in : IN std_logic_vector (15 DOWNTO 0);
filter_out : OUT std_logic_vector (15 DOWNTO 0);
)5
END Hd;

If you specify a string that is a VHDL or Verilog reserved word, a
reserved word postfix string is appended to form a valid VHDL or
Verilog identifier. For example, if you specify the reserved word
signal, the resulting name string would be signal rsvd. See
ReservedWordPostfix for more information.

The clock enable signal is asserted active high (1). Thus, the input
value must be high for the filter entity’s registers to be updated.

ClockInputPort, InputPort, InputType, OutputPort, OutputType,

ResetInputPort

ClockEnableValue

Purpose

Settings

Usage
Notes

See Also

Specify the constant value to which a test bench is to force clock enable
input signals

‘active_high' (default)
Specify that the test bench is to set the clock enable input to
active high (1).

'‘active_low'
Specify that the test bench is to set the clock enable input to
active low (0).

The Filter Design HDL Coder ignores this property if ForceClockEnable
is set to 'off'.

ClockHighTime, ClockLowTime, ForceClock, ForceClockEnable,
ForceReset, HoldTime, ResetValue

6-9

ClockHighTime

6-10

Purpose

Settings

Usage
Notes

See Also

Specify the number of nanoseconds during which a test bench is to drive
the clock input signals high (1)

ns
Specify the number of nanoseconds during which a test bench is
to drive clock input signals high (1). The default is 5.

The Filter Design HDL Coder ignores this property if ForceClock is
set to 'of f".

ClockEnableValue, ClockLowTime, ForceClock, ForceClockEnable,
ForceReset, HoldTime, ResetValue

ClockinputPort

Purpose

Settings

See Also

Name the HDL port for the filter’s clock input signals

'string'

Name the HDL port for the filter’s clock input signals. The
default is clk.

For example, if you specify the string 'filter_clock' for filter
entity Hd, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(filter_clock : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_Eni15
filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_Eni15
);
ENDHd ;

If you specify a string that is a VHDL reserved word, a reserved
word postfix string is appended to form a valid VHDL identifier.
For example, if you specify the reserved word signal, the resulting
name string would be signal rsvd. See ReservedWordPostfix
for more information.

ClockEnableInputPort, InputPort, InputType, OutputPort,
OutputType, ResetInputPort

6-11

ClockLowTime

Purpose Specify the number of nanoseconds during which a test bench is to
drive clock input signals low (0)
Settings ns
Specify the number of nanoseconds during which a test bench is
to drive clock input signals low (0). The default is 5.
Usage The Filter Design HDL Coder ignores this property if ForceClock is
Notes set to 'off".
See Also ClockEnableValue, ClockHighTime, ForceClock, ForceClockEnable,

ForceReset, HoldTime, ResetValue

6-12

ClockProcessPostfix

Purpose Specify a string to be appended to HDL clock process names

Settings 'string'
Specify a string to be appended to HDL clock process names.
The default is _process.

The Filter Design HDL Coder uses process blocks to modify the
content of a filter’s registers. The label for each of these blocks
is derived from a register name and the postfix process. For
example, the coder derives the label delay pipeline process
in the following block declaration from the register name
delay pipeline and the default postfix string process:

delay pipeline_process : PROCESS (clk, reset)
BEGIN

See Also PackagePostfix, ReservedWordPostfix

6-13

CoeffMultipliers

Purpose Specify the technique to be used for processing coefficient multiplier
operations
Settings multiplier' (default)

Retain multiplier operations in the generated HDL code. This
is the default.

‘csd’
Decrease the area used by the filter while maintaining or
increasing clock speed. This option uses canonic signed digit
(CSD) techniques, which replace multiplier operations with shift
and add operations.

‘factored-csd'
Decrease the area used by the filter by more than what you can
achieve with CSD at the cost of decreasing clock speed. This
option uses factored CSD techniques, which replace multiplier
operations with shift and add operations on prime factors of the

coefficients.
Usage By default, the Filter Design HDL Coder produces code that includes
Notes coefficient multiplier operations. You can optimize these operations by

instructing the coder to replace them with additions of partial products
produced by CSD or factored CSD techniques. These techniques
minimize the number of addition operations required for constant
multiplication by representing binary numbers with a minimum count
of nonzero digits.

Note When you specify one of the two options for optimizations, CSD
or Factored CSD, the generated test bench can produce numeric results
that differ from those produced by the original MATLAB filter function
if rounding or saturation occurs.

See Also AddPipelineRegisters, FIRAdderStyle, OptimizeForHDL

6-14

CoeffName

Pu rpose Specify a string to be used as the prefix for filter coefficient names

Settings 'string'

Customize the prefix used for filter coefficient names. The default

string is coeff.

For... The Prefix Is Concatenated with...

FIR Each coefficient number, starting with 1. For example,
filters the default for the first coefficient would be coeff1.

IIR An underscore () and an a or b coefficient name (for

filters example, a2, b1, or b2) followed by the string
_sectionn, where n is the section number. For example,
the default for the first numerator coefficient of the
third section is coeff_b1_section3.

The string that you specify

e Must start with a letter.

e Cannot end with an underscore ()

¢ Cannot include a double underscore (_)

For example:

ARCHITECTURE rtl OF Hd IS

- Type Definitions

TYPE delay_pipeline_type IS ARRAY (NATURAL range <>)

OF signed(15 DOWNTO 0); --
CONSTANT coeffi :
CONSTANT coeffi :

CONSTANT coeff1

signed(15 DOWNTO 0

)
: signed(15 DOWNTO 0) :
CONSTANT coeff1 :)

signed (15 DOWNTO O

sfix16_En15
signed(15 DOWNTO 0) :

to_signed(-30,
to_signed(-89,
to_signed(-81,
to_signed(120,

16); --
16); --
16); --
16); --

sfix16_En15
sfix16_En15
sfix16_En15
sfix16_En15

6-15

CoeffName

If you specify a string that is a VHDL or Verilog reserved word,

a reserved word postfix string is appended to form a valid HDL
identifier. For example, if you specify the reserved word constant,
the resulting base name string would be constant_rsvd. See
ReservedWordPostfix for more information.

See Also ClockProcessPostfix, EntityConflictPostfix, PackagePostfix,
ReservedWordPostfix

6-16

EntityConflictPostfix
|

Purpose Specify a string to be appended to duplicate VHDL entity or Verilog
module names

Settings 'string'
Specify a string to be appended to duplicate VHDL entity or
Verilog module names. The default string is _entity.

For example, if the Filter Design HDL Coder detects two entities

with the name MyFilt, the coder names the first entity MyFilt
and the second instance MyFilt entity.

See Also ClockProcessPostfix, CoeffName, PackagePostfix,
ReservedWordPostfix

6-17

ErrorMargin

Purpose Specify an error margin for HDL language-based test benches

Settings n
Specify an integer indicating an acceptable minimum number
of bits by which the numeric results can differ before the coder
issues a warning.

Usage Properties that provide optimizations can generate test bench code that
Notes produces numeric results that differ from those produced by the original

MATLAB filter function. Specifically, these options include

® CastBeforeSum (qfilts only)

® OptimizeForHDL

® CoeffMultipliers

® FIRAdderStyle (‘Tree’)

® AddPipelineRegisters (for FIR, Asymmetric FIR, and Symmetric

FIR filters)

The error margin is the number of least significant bits a Verilog or
VHDL language-based test bench can ignore when comparing the
numeric results before generating a warning.

See Also AddPipelineRegisters, CastBeforeSum, CoeffMultipliers,
FIRAdderStyle, OptimizeForHDL

6-18

FIRAdderStyle

Purpose

Settings

Usage
Notes

See Also

Specify a final summation technique to be used for FIR filters

'linear' (default)
Apply linear adder summation, which is discussed in most DSP
text books. This is the default.

'tree'
Increase clock speed while maintaining the area used. This
option creates a final adder that performs pair-wise addition
on successive products that execute in parallel, rather than
sequentially.

If you are generating HDL code for a FIR filter, consider optimizing
the final summation technique to be applied to the filter. By default,
the Filter Design HDL Coder applies linear adder summation.
Alternatively, you can instruct the coder to apply tree or pipeline final
summation. When set to tree mode, the coder creates a final adder
that performs pair-wise addition on successive products that execute
in parallel, rather than sequentially. Pipeline mode produces results
similar to tree mode with the addition of a stage of pipeline registers
after processing each level of the tree. For information on applying
pipeline mode, see Optimizing the Clock Rate with Pipeline Registers.

In Comparison
® The number of adder operations for linear and tree mode are the

same, but the timing for tree mode might be significantly better due
to summations occurring in parallel.

¢ Pipeline mode optimizes the clock rate, but increases the filter
latency by the base 2 logarithm of the number of products to be
added, rounded up to the nearest integer.

¢ Linear mode ensures numeric accuracy in comparison to the original
MATLAB filter function. Tree and pipeline modes can produce
numeric results that differ from those produced by the filter function.

AddPipelineRegisters, CoeffMultipliers, OptimizeForHDL

6-19

ForceClock

Purpose

Settings

See Also

6-20

Specify whether the test bench is to force clock input signals

‘'on' (default)
Specify that the test bench is to force the clock input signals. This
is the default. When this option is set, the clock high and low time
settings control the clock waveform.

‘off"

Specify that a user-defined external source is to force the clock
input signals.

ClockEnableValue, ClockHighTime, ClockLowTime, ForceClockEnable,
ForceReset, HoldTime, ResetValue

ForceClockEnable

Purpose

Settings

See Also

Specify whether the test bench is to force clock enable input signals

‘'on' (default)
Specify that the test bench is to force the clock enable input
signals to active high (1) or active low (0), depending on the
setting of the clock enable input value. This is the default.

'off'
Specify that a user-defined external source is to force the clock
enable input signals.

ClockEnableValue, ClockHighTime, ClockLowTime, ForceClock,
ForceReset, HoldTime, ResetValue

6-21

ForceReset

Purpose

Settings

See Also

6-22

Specify whether the test bench is to force reset input signals

‘'on' (default)
Specify that the test bench is to force the reset input signals. This
is the default. If you enable this option, you can also specify a
hold time to control the timing of a reset.

‘off"

Specify that a user-defined external source is to force the reset
input signals.

ClockEnableValue, ClockHighTime, ClockLowTime, ForceClock,
ForceClockEnable, HoldTime, ResetValue

HoldTime
|

Purpose Specify the hold time for filter data input signals and forced reset input
signals
Settings ns

Specify the number of nanoseconds during which filter data input
signals and forced reset input signals are to be held past the clock
rising edge. The default is 2.

This option applies to reset input signals only if forced resets
are enabled.

Usclge The hold time is the amount of time that reset input signals and input

Notes data are to be held past the clock rising edge. The following figures
show the application of a hold time (t, ;) for reset and data input
signals when the signals are forced to active high and active low.

Note A reset signal is always asserted for two cycles plus t, ;.

6-23

HoldTime

Clock
1
1
Reset Inputh 1
Active Hig L
1
1Thold
Reset Input ! !
Active Low : :
1 fholdi
1 I

I |
Hold Time for Reset Input Signals

Clock \
1

Data Input | X

Hold Time for Data Input Signals

See Also ClockEnableValue, ClockHighTime, ClockLowTime, ForceClock,
ForceClockEnable, ForceReset, ResetValue

6-24

InitializeRealSignals

Purpose Specify whether signals of type REAL are to be declared with an initial
value of 0.0
Settings ‘on’ (default)
Initialize signals of type REAL with a value of 0.0. This is the
default.

The following line of VHDL code is an example of a declaration
that results when this option is set:

SIGNAL atsumi1 : REAL := 0.0; -- double
'off’
Suppress the initialization of signals of type REAL.
See Also CastBeforeSum, InlineConfigurations, LoopUnrolling,

SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge, UseVerilogTimescale

6-25

InlineConfigurations

6-26

Purpose

Settings

Usage
Notes

See Also

Specify whether generated VHDL code is to include inline configurations

‘'on' (default)
Include VHDL configurations in any file that instantiates a
component. This is the default.

'off'
Suppress the generation of configurations and require
user-supplied external configurations.

VHDL configurations can be either inline with the rest of the VHDL
code for an entity or external in separate VHDL source files. By
default, the Filter Design HDL Coder includes configurations for a
filter within the generated VHDL code. If you are creating your own
VHDL configuration files, you should suppress the generation of inline
configurations.

CastBeforeSum, InitializeRealSignals, LoopUnrolling,
SafezZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge

InputPort
|

Purpose Name the HDL port for a filter’s input signals

Settings 'string'
Name the HDL port for the filter’s data input signals. The default
string is filter_in.

For example, if you specify the string 'filter_data_in' for filter
entity Hd, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
filter_data_in : IN std_logic_vector (15 DOWNTO 0);
filter_out : OUT std_logic_vector (15 DOWNTO 0);
)5
END Hd;

If you specify a string that is a VHDL reserved word, a reserved
word postfix string is appended to form a valid VHDL identifier.
For example, if you specify the reserved word signal, the resulting
name string would be signal rsvd. See ReservedWordPostfix
for more information.

See Also ClockEnableInputPort, ClockInputPort, OutputPort, OutputType,
ResetInputPort

6-27

InputType

Purpose Specify the HDL data type for the filter’s input port

Seﬂings 'std_logic_vector' (VHDL default)

Specify that the filter’s input port be of VHDL type
STD_LOGIC_VECTOR.

'signed_unsigned’
Specify that the filter’s input port be of VHDL type SIGNED or
UNSIGNED.

'wire' (Verilog)
Cannot modify.

See Also ClockEnableInputPort, ClockInputPort, InputPort, OutputPort,
OutputType, ResetInputPort

6-28

InstanceGenerateLabel

Purpose Specify a string to be appended to instance section labels in VHDL
GENERATE statements

Settings 'string'
Specify a postfix to be appended to instance section labels for

VHDL GENERATE statements. The default string is _gen.

See Also BlockGeneratelLabel, OutputGeneratelLabel

6-29

LoopUnrolling

Purpose

Settings

Usage
Notes

See Also

6-30

Specify whether VHDL FOR and GENERATE loops are to be unrolled and
excluded from the generated VHDL code

on’
Unroll and omit FOR and GENERATE loops from the generated
VHDL code. Verilog is always unrolled.

This option takes into account that some EDA tools do not support
GENERATE loops. If you are using such a tool, enable this option to
omit loops from your generated VHDL code.

'off' (default)
Include FOR and GENERATE loops in the generated VHDL code.
This is the default.

The setting of this option does not affect generated VHDL code during
simulation or synthesis.

CastBeforeSum, InlineConfigurations, InitializeRealSignals,
LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge

Name

Pu rpose Name a VHDL entity or Verilog module for the filter and the file that is
to contain the generated HDL code

Settings 'string'
Name a VHDL entity or Verilog module and the file that is to
contain the filter’s HDL code. The default string is the name of
the filter as defined in the context of the FDATool.

The file type extension is defined by the file extension option
for the selected language and the file is placed in the directory
defined by the specified target directory.

If you specify a string that is a VHDL or Verilog reserved word,
a reserved word postfix string is appended to form a valid
HDL identifier. For example, if you specify the reserved word
entity, the resulting name string would be entity rsvd. See
ReservedWordPostfix for more information.

See Also VerilogFileExtension, VHDLFileExtension, TargetDirectory

6-31

OptimizeForHDL

6-32

Purpose Specify whether generated HDL code is to be optimized for specific
performance or space requirements

Settings ‘on’
Generate HDL code that is optimized for specific performance or
space requirements at the cost of the Filter Design HDL Coder:

¢ Making tradeoffs concerning data types

¢ Avoiding excessive quantization

® Generating code that produces numeric results that differ from
results produced by the original MATLAB filter function
'off' (default)
Generate HDL code that maintains bit compatibility with the

numeric results produced by the specified quantized filter in
MATLAB. This is the default.

See Also AddPipelineRegisters, CoeffMultipliers, FIRAdderStyle

OutputGeneratelLabel
|

Purpose Specify a string that labels an output assignment block for VHDL
GENERATE statements

Settings 'string'
Specify a postfix to be appended to output assignment block labels
in VHDL GENERATE statements. The default string is outputgen.

See Also BlockGeneratelLabel, InstanceGeneratelLabel

6-33

OutputPort
|

Purpose Name the HDL port for a filter’s output signals

Settings 'string'
Name the HDL port for the filter’s data output signals. The
default is filter out.

For example, if you specify 'filter_data_out' for filter entity Hd,
the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
filter_in : IN std_logic_vector (15 DOWNTO 0);
filter_data_out : OUT std_logic_vector (15 DOWNTO 0);
)5
ENDHd;

If you specify a string that is a VHDL reserved word, a reserved
word postfix string is appended to form a valid VHDL identifier.
For example, if you specify the reserved word signal, the resulting
name string would be signal rsvd. See ReservedWordPostfix
for more information.

See Also ClockEnableInputPort, ClockInputPort, InputPort, InputType,
OutputType, ResetInputPort

6-34

OutputType
|

Purpose Specify the HDL data type for the filter’s output port

Seﬂings 'std_logic_vector' (VHDL default)
Specify that the filter’s output port be of VHDL type
STD_LOGIC_VECTOR.

'signed_unsigned’
Specify that the filter’s input port be of type SIGNED or UNSIGNED.

‘wire' (Verilog)
Cannot modify.

See Also ClockEnableInputPort, ClockInputPort, InputPort, InputType,
OutputPort, ResetInputPort

6-35

PackagePostfix

6-36

Purpose

Settings

See Also

Specify a string to be appended to the specified filter name to form
the name of a VHDL package file

'string'
Specify a string to be appended to the value of the name option
to form the name of a VHDL package file. The coder applies
this option only if a package file is required for the design. The
default string is _pkg.

ClockProcessPostfix, CoeffName, EntityConflictPostfix,
ReservedWordPostfix

ReservedWordPostfix

Purpose Specify a string to be appended to strings that you specify with other
options that are VHDL or Verilog reserved words

Settings 'string'
Specify a string to be appended to the value names, postfix
values, or labels that are VHDL or Verilog reserved words. The
default is _rsvd.

For example, if you name your filter mod, the Filter Design HDL
Coder adds the postfix _rsvd to form the name mod_rsvd.

See Also ClockProcessPostfix, CoeffName, EntityConflictPostfix,
PackagePostfix

6-37

ResetAssertedlLevel

Purpose

Settings

Usage
Notes

See Also

6-38

Specify the asserted (active) level of the reset input signal

'‘active_high' (default)
Specify that the reset input signal must be driven high (1) to reset
registers in the filter design.

'‘active_low'
Specify that the reset input signal must be driven low (0) to reset
registers in the filter design.

The asserted level for the reset input signal determines whether that
signal must be driven to active high (1) or active low (0) for registers
to be reset in the filter design. For example, the following code
fragment checks whether reset is active high before populating the
delay pipeline register:

Delay Pipeline_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0));

If you change the setting to active low, the IF statement in the preceding
generated code changes to

IF reset = '0' THEN

ResetType

ResetinputPort

Purpose

Settings

Usage
Notes

See Also

Name the HDL port for a filter’s reset input signals

'string'
Name the HDL port for the filter’s reset signals. The default
is reset.

For example, if you specify the string 'filter_reset' for filter
entity Hd, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;
clk_enable : IN std_logic;
filter_reset : IN std_logic;
filter_in : IN std_logic_vector (15 DOWNTO 0);
filter_out : OUT std_logic_vector (15 DOWNTO 0);
)5
END Hd;

If you specify a string that is a VHDL reserved word, a reserved
word postfix string is appended to form a valid VHDL identifier.
For example, if you specify the reserved word signal, the resulting
name string would be signal rsvd. See ReservedWordPostfix
for more information.

If the reset asserted level is set to active high, the reset input signal

is asserted active high (1) and the input value must be high (1) for the
entity’s registers to be reset. If the reset asserted level is set to active
low, the reset input signal is asserted active low (0) and the input value
must be low (0) for the entity’s registers to be reset.

ClockEnableInputPort, ClockInputPort, InputPort, InputType,
OutputPort, OutputType

6-39

ResetType
|

Purpose Specify whether an asynchronous or synchronous reset style is to be
used when generating HDL code for registers

Settings 'sync'
Use a synchronous reset style. When this style is active, clock
process blocks check for a clock event before performing a reset.

'‘async' (default)
Use an asynchronous reset style. This is the default.

Usage Whether you should set the reset style to asynchronous or synchronous
Notes depends on the type of device you are designing (for example, FPGA
or ASIC) and preference.

The following generated code fragment illustrates the use of
asynchronous resets. Note that the process block does not check for an
active clock before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
IF rising_edge(clk) THEN
IF reset = '0' THEN
delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk_enable = '1' THEN
delay _pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay pipeline(0 TO 49);
END IF;
END IF;
END PROCESS delay pipeline_process;

Code for a synchronous reset follows. This process block checks for a
clock event, the rising edge, before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

6-40

ResetType
|

IF reset = "1" THEN
delay pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk'event AND clk = '1" THEN
IF clk_enable = '1" THEN
delay_pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
END IF;
END IF;
END PROCESS delay pipeline_process;

See Also ResetAssertedlLevel

6-41

ResetValue

Pu rpose Specify the constant value to which the test bench is to force reset input
signals
Settings ‘active_high' (default)

Specify that the test bench set the reset input signal to active
high (1). This is the default.

'‘active_low'
Specify that the test bench set the reset input signal to active

low (0).
Usage The setting for this option must match the setting of the reset asserted
Notes level specified for the filter’s test bench. Also note that the Filter Design

HDL Coder ignores the setting of this option if forced resets are disabled.

See Also ClockEnableValue, ClockHighTime, ClockLowTime, ForceClock,
ForceClockEnable, ForceReset, HoldTime

6-42

SafeZeroConcat

Purpose

Settings

See Also

Specify the syntax to be used in the generated VHDL code for
concatenated zeros

‘'on' (default)
Use the type safe syntax, '0' & '0', for concatenated zeros.
Typically, this syntax is preferred. This is the default.

‘off'
Use the syntax "000000. . ." for concatenated zeros. This syntax
can be easier to read and is more compact, but can lead to
ambiguous types.

CastBeforeSum, InlineConfigurations, InitializeRealSignals,
LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge

6-43

ScaleWarnBits
|

Pu rpose Control whether the coder generates a warning for scale values that are
below a specified numeric threshold relative to the input data format

Settings n
Specify a numeric value the coder is to use as a minimum overlap
threshold between input data and scale values converted to
the input data format before issuing warnings that suggest
quantization noise. The default minimum is 3 bits.

To suppress the warnings, specify a value that equals the number
of bits in the input format.

Usage Use this option for fixed-point filters when you need to control whether
the coder generates a warning for scale values that are below a specified
numeric threshold relative to the input data format. These warnings
help identify scale values that cause the input range to be quantized to
near zero, adding quantization noise.

You can control the warnings by adjusting an overlap threshold. The
coder temporarily converts a scale value to the data type of the filter
input. Then, the coder checks whether the number of leading zeros in
the converted value is greater than or equal to the specified overlap
threshold. If this condition exists, the coder generates a warning.

You can prevent the coder from generating these warnings by setting
the minimum overlap to the number of bits in the input format.
However, if the converted scale value equals zero, the coder reports an
error because the input range is quantized away.

For examples, see “ Minimizing Quantization Noise for Fixed-Point
Filters” on page 3-43.

See Also CastBeforeSum, InlineConfigurations, InitializeRealSignals,
LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge, UseVerilogTimescale

6-44

SimulatorFlags

Pu rpose Specify simulator flags that are to be applied to your generated test
bench
Settings 'string'

Specify options that are specific to your application and the
simulator you are using. For example, if you must use the
1076-1993 VHDL compiler, specify the flag 93.

Usage The flags you specify with this option are added to the vcom command
Notes in generated ModelSim .do test bench files.

6-45

SplitArchFilePostfix

6-46

Purpose

Settings

Usage
Notes

See Also

Specify a string to be appended to the specified name to form the name
of the file that is to contain the filter’s VHDL architecture

'string'
Name the postfix to be appended to the name of the file containing
the filter’s VHDL architecture. The default is _arch.

The option applies only if you direct the Filter Design HDL Coder to
place the filter’s entity and architecture in separate files.

SplitEntityArch, SplitEntityFilePostfix

SplitEntityArch
|

Purpose Specify whether the generated VHDL entity and architecture code is to
be included in a single VHDL file or separate files

Settings ‘on’
Write the generated filter VHDL code to a single file.

'off' (default)
Write the code for the filter VHDL entity and architecture to
separate files.

If you separate the code, the Filter Design HDL Coder derives the
names of the entity and architecture files from
¢ The base filename, as specified by the filter name option

¢ Default postfix strings entity and _arch or user-specified
postfix strings

¢ The VHDL file type extension, as specified by the VHDL file
extension option

For example, instead of all generated code residing in MyFIR.vhd,
you can specify that the code reside in MyFIR entity.vhd and
MyFIR_arch.vhd.

See Also SplitArchFilePostfix, SplitEntityFilePostfix

6-47

SplitEntityFilePostfix

6-48

Purpose

Settings

Usage
Notes

See Also

Specify a string to be appended to the specified filter name to form the
name of the file that is to contain the filter’s VHDL entity

'string'
Name the postfix to be appended to the name of the file containing
the filter’s VHDL entity. The default is _entity.

This option applies only if you direct the Filter Design HDL Coder to
place the filter’s entity and architecture in separate files.

SplitEntityArch, SplitArchFilePostfix

TargetDirectory

Purpose

Settings

See Also

Identify the directory into which generated output files are to be written
'string'
Name the subdirectory under the current working directory into

which generated files are to be written. The string can specify a
complete pathname. The default string is hd1lsrc.

Name, VerilogFileExtension, VHDLFileExtension

6-49

TargetLanguage

Purpose Specify the HDL language to use for the generated filter code

Settings 'VHDL' (default)
Generate VHDL filter code.

'verilog'
Generate Verilog filter code.

6-50

TestBenchName

Purpose Name a VHDL test bench entity or Verilog module and the file that is
to contain test bench code

Settings 'string'
Name a VHDL test bench entity or Verilog module and the file
that is to contain the test bench code. The file type extension
depends on the type of test bench that is being generated.

If the Test Bench The Extension Is...

Is a...

Verilog file Defined by the Verilog file extension
option

VHDL file Defined by the VHDL file extension
option

ModelSim DO file .do

The file is placed in the directory defined by the specified target
directory.

If you specify a string that is a VHDL or Verilog reserved word,
a reserved word postfix string is appended to form a valid
HDL identifier. For example, if you specify the reserved word
entity, the resulting name string would be entity rsvd. See
ReservedWordPostfix for more information.

See Also ClockEnableValue, ClockHighTime, ClockLowTime, ForceClock,
ForceClockEnable, ForceReset, HoldTime, TestBenchName

6-51

TestBenchStimulus

6-52

Purpose

Settings

Usage
Notes

See Also

Specify the input stimuli the test bench is to apply to the filter

'impulse’
Specify that the test bench acquire an impulse stimulus response,
which is output arising from the unit impulse input sequence
defined such that the value of x(n) is 1 when n equals 1 and x(n)
equals 0 when n does not equal 1.

'step’
Specify that the test bench acquire a step stimulus response.
‘ramp'
Specify that the test bench acquire a ramp stimulus response,
which is a constantly increasing or constantly decreasing signal.
‘chirp’
Specify that the test bench acquire a chirp stimulus response,
which is a linear swept-frequency cosine signal.
‘noise’
Specify that the test bench acquire a white noise stimulus
response.

Default settings depend on the structure of the filter.

For Filters... Default Responses Include...

FIR, FIRT, Symmetric Impulse, step, ramp, chirp, and white
FIR, and Antisymmetric noise
FIR

All others Step, ramp, and chirp

You can specify any combination of stimuli in any order. If you specify
multiple stimuli, specify the appropriate strings in a cell array. For
example:

{'impulse', 'ramp', 'noise'}
TestBenchUserStimulus

TestBenchUserStimulus

Purpose Specify a user-defined MATLAB function that returns a vector of values
that the test bench is to apply to the filter

Settings M-function
Specify a MATLAB function that returns a vector of stimulus
response values that the test bench is to apply to the filter. The
filter’s input quantizer settings are used to quantize and scale the
function’s input values.

For example, the following MATLAB function call generates a
square wave with a sample frequency of 8 bits per second (Fs/8):

repmat([1 111000 0], 1, 10)

See Also TestBenchStimulus

6-53

UseAggregatesForConst

Purpose Specify whether all constants should be represented by aggregates,
including constants that are less than 32 bits

Settings ‘on’
Specify that all constants, including constants that are less than
32 bits, be represented by aggregates. The following VHDL
constant declarations show scalars less than 32 bits being
declared as aggregates:

CONSTANT coeff1 :signed(15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0',
OTHERS => ", '); -- sfix16_En15
CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => "0,

OTHERS => ", '); -- sfix16_En15

'off' (default)
Specify that the coder represent constants less than 32 bits
as scalars and constants greater than or equal to 32 bits as
aggregates. This is the default. The following VHDL constant
declarations are examples of declarations generated by default for
values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15
CONSTANT coeff2 :signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15
See Also CastBeforeSum, InlineConfigurations, InitializeRealSignals,

LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge, UseVerilogTimescale

6-54

UserComment

Purpose Specify a string to be added as a comment line in the header of
generated filter and test bench files

Settings 'string'
Specify a string that is to be added to the end of the comment
header of the generated filter and test bench files.
For example, you might use this option to add the revision control

tag $Revision: 1.1.2.2 $. The resulting header comment
block for filter Hd would appear as follows:

- Module:Hd
- Generated by MATLAB(R) 7.0 and the Filter Design HDL Coder 1.0.
- Generated on: 2004-02-04 09:42:43

- $Revision: 1.1.4.7 $

6-55

UseRisingEdge

6-56

Purpose Specify the VHDL coding style to be used to check for rising edges when
operating on registers

Settings ‘on’
Use the VHDL rising_edge function to check for rising edges
when operating on registers. The generated code applies
rising edge as shown in the following PROCESS block:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
ELSIF rising_edge(clk) THEN
IF clk_enable = '1" THEN
delay pipeline(0) <= signed(filter_in);
delay_pipeline(1 TO 50) <= dleay pipeline(0 TO 49);
END IF;
END IF;
END PROCESS Delay Pipeline_Process ;

'off' (default)
Check for clock events when operating on registers. The generated
code checks for a clock event as shown in the ELSIF statement of
the following PROCESS block:

Delay Pipeline_Process : PROCESS (clk, reset)
BEGIN
IF reset = '1" THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1" THEN
delay_pipeline(0) <= signed(filter_in);
delay_pipeline(1 TO 50) <= dleay_pipeline(0 TO 49);

UseRisingEdge
|

END IF;
END IF;
END PROCESS Delay Pipeline_Process ;

Usage The two coding styles have different simulation behavior when the clock
Notes transitions from X' to 1.
See Also CastBeforeSum, InlineConfigurations, InitializeRealSignals,

LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge

6-57

UseVerilogTimescale

6-58

Purpose

Settings

Usage
Notes

See Also

Specify whether generated Verilog code can include compiler “timescale
directives

‘on' (default)

Use compiler “timescale directives in generated Verilog code.
This is the default.

'of f'
Suppress the use of compiler “timescale directives in generated
Verilog code.

The “timescale directive provides a way of specifying different delay
values for multiple modules in a Verilog file.

CastBeforeSum, InlineConfigurations, InitializeRealSignals,
LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge

VerilogFileExtension

Purpose Specify the string to be used as the file type extension for generated
Verilog files
Settings 'string'

Specify a file type extension for generated Verilog files. The
default string is .v.

See Also Name, TargetDirectory

6-59

VHDLFileExtension

Purpose Specify the string to be used as the file type extension for generated
VHDL files
Settings 'string'

Specify a file type extension for generated VHDL files. The
default is .vhd

See Also Name, TargetDirectory

6-60

Functions — Alphabetical
List

generatehd|
|

Purpose Generate HDL code for a quantized filter
Syntax generatehdl (Hd)
generatehdl(Hd 'PropertyName', 'PropertyValue',...)
Description generatehdl (Hd) generates HDL code for the quantized filter identified

by Hd. The function uses default settings for properties that determine
file and HDL element naming, whether optimizations are applied, HDL
coding styles, and test bench characteristics. By default the function
does the following.

Default Settings

¢ Places generated files in the target directory hdlsrc and names
the files as follows:

File Name

Verilog source Hd.v, where Hd is the name of the specified
filter object

VHDL source Hd.vhd, where Hd is the name of the
specified filter object

VHDL package Hd_pkg.vhd, where Hd is the name of the
specified filter object
® Places generated files in a subdirectory name hdlsrc, under
your current working directory.

¢ Includes the VHDL entity and architecture code in a single
source file.

Default Settings for Register Resets

¢ Uses an asynchronous reset when generating HDL code for
registers.

¢ Uses an active-high (1) signal for register resets.

7-2

generatehdl

Default Settings for General HDL Code

® Names the generated VHDL entity or Verilog module with the
name of the quantized filter.

¢ Names a filter’s HDL ports as follows:

HDL Port Name
Input filter_in
Output filter_out
Clock input clk

Clock enable input clk_enable
Reset input reset

e Sets the data type for clock input, clock enable input, and reset
ports to STD_LOGIC and data input and output ports to VHDL
type STD_LOGIC_VECTOR or Verilog type wire.

e Names coefficients as follows:

For... Names Coefficients...

FIR filters coeffn, where n is the coefficient
number, starting with 1

IIR filters coeff_xm_sectionn, where x is a or b,
m is the coefficient number, and n is the
section number

®* When declaring signals of type REAL, initializes the signal with
a value of 0.0.

® Places VHDL configurations in any file that instantiates a
component.

® Appends rsvd to names that are VHDL or Verilog reserved
words.

7-3

generatehd|
|

® Uses a type safe representation when concatenating zeros:
‘0" & '0'...

® Applies the statement IF clock'’event AND clock='1' THEN to
check for clock events.

¢ Allows a minimum of 3 bits of filter input and coefficient scale
values to overlap before a warning is issued.

¢ Adds an extra input register and an extra output register to
the filter.

® Appends _process to process names.
® When creating labels for VHDL GENERATE statements:
— Appends _gen to section and block names.
— Names output assignment blocks with the string outputgen.
Default Settings for Code Optimizations

¢ Generates HDL code that is bit-true to the original MATLAB
filter function and is not optimized for performance or space
requirements.

® Applies a linear final summation to FIR filters. This is the form
of summation explained in most DSP text books.

¢ Enables multiplier operations for a filter, as opposed to
replacing them with additions of partial products.

generatehdl(Hd 'PropertyName', 'PropertyValue',...) generates
HDL code for the filter identified by Hd, using the specified property
name and property value pair settings. You can specify the function
with one or more of the property name and property value pairs
described in Chapter 5, “Properties — Categorical List” and Chapter 6,
“Properties — Alphabetical List”.

Example 1 Design a filter. The call to firceqrip in the following command
sequence designs an equiripple lowpass finite impulse response (FIR)
filter with linear phase, an order of 30, a cutoff frequency of 0.4,

7-4

generatehdl
|

and maximum passband and stopband errors set to 0.05 and 0.03,
respectively. The design results are returned to the cell array h.

2 Construct a quantized filter. The call to dfilt constructs a
quantized FIR filter Hd with reference coefficients specified by the
cell array h.

3 Set the filter arithmetic. The arithmetic assignment statement
sets the filter arithmetic to fixed-point arithmetic.

4 Override the FDATool typecasting setting. By default, the
FDATool enable typecasting of input values before addition and
subtraction operations occur. For hardware efficiency, it is best to
override this setting and disable typecasting.

5 Generate HDL code for the filter. The call to generatehdl
generates HDL code for the quantized filter Hd. The function names
the file MyFilter.vhd and places it in the default target directory
hdlsrc.

h=firceqrip(30,0.4,[0.05 0.03]); %Design a filter

Hd= dfilt.dffir(h); %Construct a quantized filter
Hd.arithmetic='fixed'; %Quantized filter with default settings
Hd.castbeforesum=false; %Improves hardware efficiency
generatehdl(Hd, 'Name', 'MyFilter'); %Generate filter's VHDL code

See Also generatetb, generatetbstimulus

7-5

generatetb

Purpose Generate an HDL test bench for a quantized filter
Syntax generatetb(Hd, 'TbType')

generatehdl(Hd 'TbType', 'PropertyName’', 'PropertyValue',...)
Description generatetb(Hd, 'TbType') generates a HDL test bench of a specified

type to verify the HDL code generated for the quantized filter identified
by Hd. The value that you specify for 'TbType' identifies the type of test
bench to be generated and can be one of the following values or a cell
array that contains one or more of the following values:

Specify... To Generate a Test Bench Consisting of...
'Verilog' Verilog code

"VHDL' VHDL code

'ModelSim' ModelSim script file

The generated test bench applies input stimuli based on the setting of
the properties TestBenchStimulus and TestBenchUserStimulus. By
default, TestBenchStimulus specifies impulse, step, ramp, chirp, and
noise stimuli for FIR, FIRT, Symmetric FIR, and Antisymmetric FIR
filters and step, ramp, and chirp stimuli for all other filters.

The function uses default settings for other properties that determine
test bench characteristics. By default the function does the following.
Default Settings for the Test Bench

® Places the generated test bench file in the target directory
hdlsrc under your current working directory with the name
Hd_tb and a file type extension that is based on the type of
test bench you are generating.

7-6

generatetb

If the Test Bench Is a... The Extension lIs...
Verilog file Defined by the property
VerilogFileExtension
VHDL file Defined by the property
VHDLFileExtension
ModelSim script file .do

® Forces clock, clock enable, and reset input signals.
® Forces clock enable and reset input to active high.

® Drives the clock input signal high (1) for 5 nanoseconds and
low (0) for 5 nanoseconds.

® Forces reset signals.

® Applies a hold time of 2 nanoseconds to filter reset and data
input signals.

¢ For HDL test benches, applies an error margin of 4 bits.
Default Settings for Files
® Places generated files in the target directory hdlsrc and names
the files as follows:
File Name

Verilog source Hd.v, where Hd is the name of the specified
filter object

VHDL source Hd.vhd, where Hd is the name of the
specified filter object

VHDL package Hd_pkg.vhd, where Hd is the name of the
specified filter object

® Places generated files in a subdirectory name hdlsrc, under
your current working directory.

7-7

generatetb

¢ Includes VHDL entity and architecture code in a single source
file.

Default Settings for Register Resets

¢ Uses an asynchronous reset when generating HDL code for
registers.

® Asserts the reset input signal high (1) to reset registers in
the design.

Default Settings for General HDL Code

¢ Names the generated VHDL entity or Verilog module with
the name of the filter.

¢ Names the filter’s HDL ports as follows:

HDL Port Name
Input filter_in
Output filter out
Clock input clk

Clock enable input clk _enable
Reset input reset

¢ Sets the data type for clock input, clock enable input, and reset
ports to STD_LOGIC and data input and output ports to VHDL
type STD_LOGIC VECTOR or Verilog type wire.

e Names coefficients as follows:

7-8

generatetb

For... Names Coefficients...

FIR filters coeffn, where n is the coefficient
number, starting with 1

IIR filters coeff_xm_sectionn, where x is a or b,
m is the coefficient number, and n is the
section number

®* When declaring signals of type REAL, initializes the signal with
a value of 0.0.

® Places VHDL configurations in any file that instantiates a
component.

® Appends rsvd to names that are VHDL or Verilog reserved
words.

® Uses a type safe representation when concatenating zeros:
‘0" & '0...

® Applies the statement IF clock’event AND clock='1'" THEN to
check for clock events.

e Allows scale values to be up to 3 bits smaller than filter input
values.

¢ Adds an extra input register and an extra output register to
the filter.

® Appends process to process names.
® When creating labels for VHDL GENERATE statements:
— Appends _gen to section and block names.
— Names output assignment blocks with the string outputgen
Default Settings for Code Optimizations

¢ Generates HDL code that is bit-true to the original MATLAB
filter function and is not optimized for performance or space
requirements.

7-9

generatetb

7-10

Example

® Applies a linear final summation to FIR filters. This is the form
of summation explained in most DSP text books.

¢ Enables multiplier operations for a filter, as opposed to
replacing them with additions of partial products.

generatehdl(Hd 'TbType', 'PropertyName', 'PropertyValue’,...)
generates a HDL test bench of a specified type to verify the HDL code
generated for the quantized filter identified by Hd, using the specified
property name and property value pair settings. You can specify the
function with one or more of the property name and property value
pairs described in Chapter 5, “Properties — Categorical List” and
Chapter 6, “Properties — Alphabetical List”.

Design a filter. The call to firceqrip in the following command
line sequence designs an equiripple lowpass finite impulse response
(FIR) filter with linear phase, an order of 30, a cutoff frequency of 0.4,
and maximum passband and stopband errors set to 0.05 and 0.03,
respectively. The design results are returned to the cell array h.

Construct a quantized filter. The call to dfilt constructs a
quantized FIR filter Hd with reference coefficients specified by the
cell array h returned by firceqrip.

Set the filter arithmetic. The arithmetic assignment statement
sets the filter arithmetic to fixed-point arithmetic.

Override the FDATool typecasting setting. By default, the
FDATool enable typecasting of input values before addition and
subtraction operations occur. For hardware efficiency, it is best to
override this setting and disable typecasting.

Generate VHDL code for the filter. The call to generatehdl
generates VHDL code for the quantized filter Hd. The function names
the file MyFilter.vhd and places it in the default target directory
hdlsrc.

Generate a test bench for the filter. The call to generatetb
generates a ModelSim VHDL test bench for the filter Hd named

generatetb

Hd_tb.do and places the generated test bench file in the default
target directory hdlsrc.

h=firceqrip(30,0.4,[0.05 0.03]); %Design a filter

Hd= dfilt.dffir(h); %Construct a quantized filter
Hd.arithmetic='fixed'; %Quantized filter with default settings
Hd.castbeforesum=false; %Improves hardware efficiency
generatehdl(Hd, 'Name', 'MyFilter'); %Generate filter's VHDL code
generatetb(Hd, 'ModelSim', 'TestBenchName', 'MyFilterTB');

See Also generatetbstimulus, generatehdl

7-11

generatetbstimulus

7-12

Purpose

Syntax

Description

Example

Generate and return HDL test bench stimulus

generatetbstimulus (Hd)
generatetbstimulus(Hd, 'PropertyName', 'PropertyValue'...)
X = generatetbstimulus(Hd, 'PropertyName', 'PropertyValue'...)

generatetbstimulus(Hd) generates and returns filter input
stimulus for the filter Hd based on the setting of the properties
TestBenchStimulus and TestBenchUserStimulus. By default,
TestBenchStimulus specifies impulse, step, ramp, chirp, and noise
stimuli for FIR, FIRT, Symmetric FIR, and Antisymmetric FIR filters,
and step, ramp, and chirp stimuli for all other filters.

Note The function quantizes the results by applying the reference
coefficients of the specified quantized filter.

generatetbstimulus(Hd, 'PropertyName', 'PropertyValue'...)
generates and returns filter input stimuli for the filter Hd based on
specified settings for TestBenchStimulus and TestBenchUserStimulus .

X = generatetbstimulus(Hd, 'PropertyName’,
'PropertyValue'...)generates and returns filter input stimuli for
the filter Hd based on specified settings for TestBenchStimulus and
TestBenchUserStimulus and writes the output to x for future use
or reference.

Generate and return test bench stimuli. The call to
generatetbstimulus in the following command line sequence
generates ramp and chirp stimuli and returns the results to y.

2 Apply a quantized filter to the data and plot the results. The
call to the filter function applies the quantized filter Hd to the
data that was returned to y and gains access to state and filtering
information. The plot function then plots the resulting data.

generatetbstimulus

y = generatetbstimulus(Hd, 'TestBenchStimulus', {'ramp', 'chirp'});
%Generate and return test bench stimuli

plot(filter(Hd,y)); %Apply a quantized filter to the

data and plot the results

See Also generatetb

7-13

Examples

A Examples

Tutorials

“Basic FIR Filter Tutorial” on page 2-3
“Optimized FIR Filter Tutorial” on page 2-23
“IIR Filter Tutorial” on page 2-43

Basic FIR Filter Tutorial

Basic FIR Filter Tutorial

“Designing a Basic FIR Filter” on page 2-3

“Quantizing the Basic FIR Filter” on page 2-5

“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8

“Getting Familiar with the Basic FIR Filter’s Generated VHDL Code”
on page 2-15

“Verifying the Basic FIR Filter’s Generated VHDL Code” on page 2-16

A

Examples

Optimized FIR Filter Tutorial

“Designing the FIR Filter” on page 2-23

“Quantizing the FIR Filter” on page 2-25

“Configuring and Generating the FIR Filter’s Optimized Verilog Code”

on page 2-28

“Getting Familiar with the FIR Filter’s Optimized Generated Verilog
Code” on page 2-35

“Verifying the FIR Filter’s Optimized Generated Verilog Code” on page 2-37

IR Filter Tutorial

IR Filter Tutorial

“Designing an IIR Filter” on page 2-43

“Quantizing the IIR Filter” on page 2-45

“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-49
“Getting Familiar with the IIR Filter’s Generated VHDL Code” on page
2-55

“Verifying the IIR Filter’s Generated VHDL Code” on page 2-56

A Examples

A

Add input register option 3-42
Add output register option 3-42
Add pipeline registers option 3-58
AddInputRegister property 6-2
addition operations
specifying input type treatment for 3-52
type casting 6-7
AddOutputRegister property 6-3
AddPipelineRegisters property 6-4
advanced coding properties 5-4
Advanced tab 3-43
antisymmetric FIR filters 1-6
application-specific integrated circuits
(ASICs) 1-2
architectures
setting postfix for from command line 6-46
setting postfix for from GUI 3-23
ASICs (application-specific integrated circuits
) 1-2
asserted level, reset 3-28
setting 6-38
asynchronous resets
setting from command line 6-40
setting from GUI 3-26

block labels
for GENERATE statements 6-6
for output assignment blocks 6-33
BlockGenerateLabel property 6-6

C

canonical signed digit (CSD) technique 3-55
Cast before sum option 3-52
CastBeforeSum property 6-7
checklist

requirements 3-13

clock
configuring for test benches 3-65
specifying high time for 6-10
specifying low time for 6-12
clock enable input port
naming 3-38 6-8
specifying forced signals for 6-21
Clock enable port options 3-38
clock enable value 3-65 6-9
Clock enable value option 3-65
Clock high time option 3-65
clock input port
naming 3-38 6-11
specifying forced 6-20
Clock low time 3-65
Clock port options 3-38
clock process names
specifying postfix for 6-13
clock time
configuring 3-65
high 6-10
low 6-12
clocked process block labels 3-37
Clocked process postfix option 3-37
ClockEnableInputPort property 6-8
ClockEnableValue property 6-9
ClockHighTime property 6-10
ClockInputPort property 6-11
ClockLowTime property 6-12
ClockProcessPostfix property 6-13
code, generated 3-74
advanced properties for customizing 5-4
compiling 4-7 4-16
configuring for basic FIR filter tutorial 2-8
configuring for IIR filter tutorial 2-49
configuring for optimized FIR filter
tutorial 2-28
customizing 3-29
defaults for 3-9
for filter and test bench 4-3

Index-1

Index

general HDL defaults 3-10
optimizing 3-55
reviewing for basic FIR filter tutorial 2-15
reviewing for IIR filter tutorial 2-55
reviewing for optimized FIR filter
tutorial 2-35
verifying for basic FIR filter tutorial 2-16
verifying for IIR filter tutorial 2-56
verifying for optimized FIR filter
tutorial 2-37
Coeff multipliers option 3-55
coefficient multipliers 3-55
Coefficient name option 3-32
coefficients
naming 6-15
specifying a for 3-32
CoeffMultipliers property 6-14
CoeffName property 6-15
command line interface 1-5
generating filter and test bench code
with 4-3
command, fdatool 3-4
Comment in header option 3-30
comments, header
as property value 6-55
specifying 3-30
Concatenate type safe zeros 3-49
configurations, inline
suppressing from command line 6-26
suppressing from GUI 3-48
constants
setting representation from command
line 6-54
setting representation from GUI 3-45
context-sensitive help 1-11
CSD technique 3-55

D
data input port

Index-2

naming from command line 6-27
naming from GUI 3-38
specifying hold time for from GUI 3-69
specifying hold time for with command
line 6-23
data output port
specifying name from command line 6-34
specifying name from GUI 3-38
defaults
for general HDL code 3-10
for generated files 3-9
for optimizations 3-11
for resets 3-10
for test benches 3-12
demos 1-12
dialogs
Generate HDL
description 1-4
opening 3-4
setting optimizations with 3-54
setting test bench options with 3-61
specifying test bench type with 3-62
HDL Options 3-29
Test Bench Options 3-61
Direct Form I filters 1-6
Direct Form II filters 1-6
directory, target 6-49

entities
name conflicts of 3-33
naming 6-31
setting names of 3-20
setting postfix for from command line 6-48
setting postfix for from GUI 3-23
Entity conflict postfix option 3-33
entity name conflicts 6-17
EntityConflictPostfix property 6-17
error margin

Index

specifying from command line 6-18
specifying from GUI 3-70

Error margin option 3-70

ErrorMargin property 6-18

F

factored CSD technique 3-55
FDATool 1-4
fdatool command 3-4
features 1-3
field programmable gate arrays (FPGAs) 1-2
file extensions
setting 3-20
Verilog 6-59
VHDL 6-60
file location properties 5-2
file naming properties 5-2
filenames
defaults for 3-9
for architectures 6-46
for entities 6-48
for generated output 1-8
files, generated
default names for 3-9
defaults for 3-9
HDL output 1-8
setting architecture postfix for 3-23
setting entity postfix for 3-23
setting location of 3-21
setting names of 3-20
setting options for 3-19
setting package postfix for 3-22
splitting 6-47
test bench 6-51
filter arithmetic 3-4
Filter Design HDL Coder
applying to hardware design process 1-13
as FDATool plug-in 1-4
command line interface 1-5

features of 1-3
graphical user interface 1-4
prerequisite knowledge for 1-3
user profiles for 1-3
what is 1-2
workflow 1-13
filter input 6-44
filter structures 1-6
Filter target language option 3-18
filters
designing in basic FIR tutorial 2-3
designing in IIR filter tutorial 2-43
designing in optimized FIR filter
tutorial 2-23
generated HDL output for 1-8
naming generated file for 6-31
properties of 1-7
quantized 1-6
quantizing 3-4

quantizing in basic FIR filter tutorial 2-5

quantizing in IIR filter tutorial 2-45
quantizing in optimized FIR filter
tutorial 2-25
realizations of 1-6
finite impulse response (FIR) filters 1-6
FIR adder style option 3-57
FIR filter tutorial
basic 2-3
optimized 2-23
FIR filters 1-6
optimizing clock rate for 3-58
optimizing final summation for 3-57

specifying summation technique for 6-19

FIRAdderStyle property 6-19
Force clock enable option 3-65
Force clock option 3-65

force reset hold time 6-23

Force reset option 3-67
ForceClock property 6-20
ForceClockEnable property 6-21

Index-3

Index

ForceReset property 6-22
FPGAs (field programmable gate arrays) 1-2
functions

generatehdl 7-2

generatetb 7-6

generatetbstimulus 7-12

input parameters for 1-7

G

General tab 3-32
Generate HDL dialog

defaults 3-9

description 1-4

opening 3-4

setting optimizations with 3-54

specifying test bench type with 3-62
generatehdl function 7-2
generatetb function 7-6
generatetbstimulus function 7-12
graphical user interface 1-4

H

hardware description languages (HDLs) 1-2
See also Verilog; VHDL

HDL code 2-8
See also code, generated

HDL files 1-8

HDL language 3-18

HDL Options dialog 3-29

HDL test benches 4-3

HDLs (hardware description languages) 1-2
See also Verilog; VHDL

header comment properties 5-3

header comments 3-30

help
context-sensitive 1-11
getting 1-10

Help browser 1-11

Index-4

hold time 6-23
for data input signals 3-69
for resets 3-67

Hold time option
for data input signals 3-69
for resets 3-67

HoldTime property 6-23

IIR filter tutorial 2-43
IIR filters 1-6

optimizing clock rate for 3-58
infinite impulse response (IIR) filters 1-6
Initialize real signals to 0.0 option 3-51
InitializeRealSignals property 6-25
inline configurations

specifying 6-26

suppressing the generation of 3-48
Inline VHDL configurations option 3-48
InlineConfigurations property 6-26
input data overlay with scale values 3-43
Input data type option 3-40
input parameters 1-7
Input port option 3-38
input ports

naming 3-38

specifying data type for 6-28
input registers

adding code for 6-2

suppressing generation of extra 3-42
InputPort property 6-27
InputType property 6-28
installation 1-9
instance sections 6-29
InstanceGeneratelLabel property 6-29

L
labels

Index

block 6-33
specifying postfix for 6-6

process block 3-37
language

setting target 3-18

target 6-50
language selection properties 5-2
linear FIR final summation 3-57
Loop unrolling option 3-46
loops

unrolling 6-30

unrolling and removing 3-46
LoopUnrolling property 6-30

M

M-help 1-11
Minimum overlap of scale values option 3-43
ModelSim 4-15
ModelSim DO file

executing 4-17

testing with 4-12
ModelSim DO file test benches 3-62
module name conflicts 6-17
modules

name conflicts for 3-33

naming 6-31

setting names of 3-20
multipliers

optimizing coefficient 3-55

name conflicts 6-17
Name option 3-20
Name property 6-31
names
clock process 6-13
coefficient 3-32
package file 6-36

naming properties 5-3

o
optimization properties 5-6
optimizations
defaults for 3-11
for synthesis 3-59
HDL code 3-55 6-32
setting 3-54
Optimize for HDL option 3-55
optimized FIR filter tutorial 2-23
OptimizeForHDL property 6-32
options
Add input register 3-42
Add output register 3-42
Add pipeline registers 3-58
Cast before sum 3-52
Clock enable input port 3-38
Clock enable value 3-65
Clock high time 3-65
Clock low time 3-65
Clock port 3-38
Clocked process postfix 3-37
Coeff multipliers 3-55
Coefficient name 3-32
Comment in header 3-30
Concatenate type safe zeros 3-49
Entity conflict postfix 3-33
Error margin 3-70
Filter target language 3-18
FIR adder style 3-57
Force clock 3-65
Force clock enable 3-65
Force reset 3-67
Hold time 3-67 3-69
Initialize real signals to 0.0 3-51
Inline VHDL configurations 3-48
Input data type 3-40
Input port 3-38

Index-5

Index

Loop unrolling 3-46
Minimum overlap of scale values 3-43
Optimize for HDL 3-55
Output data type 3-40
Output port 3-38
Package postfix 3-22
Represent constant values by
aggregates 3-45
Reserved word postfix 3-34
Reset asserted level 3-28
Reset port 3-38
Reset type 3-26
Reset value 3-67
Split arch. file postfix 3-23
Split entity and architecture 3-23
Split entity file postfix 3-23
Target directory
for test bench output 3-61
redirecting output with 3-21
Use ’rising_edge’ for registers 3-47
Use Verilog “timescale directives 3-50
User defined response 3-72
Verilog file extension
setting file extension with 3-20
Verilog file extension option
renaming test bench file with 3-61
VHDL file extension
renaming test bench file with 3-61
setting file extension with 3-20

output

generated HDL 1-8
redirecting 3-21

Output data type option 3-40
Output port option 3-38
output ports

naming 3-38
specifying data type for 6-35

output registers

Index-6

adding code for 6-3
suppressing generation of extra 3-42

OutputGeneratelLabel property 6-33
OutputPort property 6-34
OutputType property 6-35

P

package files
default name for 3-9
specifying postfix for 6-36
Package postfix option 3-22
PackagePostfix property 6-36
packages
setting names of 3-20
setting postfix for 3-22
parameters 1-7
pipeline registers
using from command line 6-4
using from GUI 3-58
pipelined FIR final summation 3-57
port data types 3-40
port properties 5-4
ports
clock enable input 6-8
clock input 6-11
data input 6-27
data output 6-34
input 6-28
naming 3-38
output 6-35
reset input 6-39
Ports tab 3-38
process block labels 3-37
properties
AddInputRegister 6-2
AddOutputRegister 6-3
AddPipelineRegisters 6-4
advanced coding 5-4
as input parameters 1-7
BlockGenerateLabel 6-6
CastBeforeSum 6-7

Index

ClockEnableInputPort 6-8
ClockEnableValue 6-9
ClockHighTime 6-10
ClockInputPort 6-11
ClockLowTime 6-12
ClockProcessPostfix 6-13
coding 5-4
CoeffMultipliers 6-14
CoeffName 6-15
EntityConflictPostfix 6-17
ErrorMargin 6-18

file location 5-2

file naming 5-2
FIRAdderStyle 6-19
ForceClock 6-20
ForceClockEnable 6-21
ForceReset 6-22

header comment 5-3
HoldTime 6-23
InitializeRealSignals 6-25
InlineConfigurations 6-26
InputPort 6-27

InputType 6-28
InstanceGeneratelLabel 6-29
language selection 5-2
LoopUnrolling 6-30

Name 6-31

naming 5-3

optimization 5-6
OptimizeForHDL 6-32
OutputGenerateLabel 6-33
OutputPort 6-34
OutputType 6-35
PackagePostfix 6-36

port 5-4
ReservedWordPostfix 6-37
reset 5-2
ResetAssertedLevel 6-38
ResetInputPort 6-39
ResetType 6-40

ResetValue 6-42
SafeZeroConcat 6-43
ScaleWarnBits 6-44
SimulatorFlags 6-45
SplitArchFilePostfix 6-46
SplitEntityArch 6-47
SplitEntityFilePostfix 6-48
TargetDirectory 6-49
TargetLanguage 6-50

test bench 5-6
TestBenchName 6-51
TestBenchStimulus 6-52
TestBenchUserStimulus 6-53
UseAggregatesForConst 6-54
UserComment 6-55
UseRisingEdge 6-56
UseVerilogTimescale 6-58
VerilogFileExtension 6-59
VHDLFileExtension 6-60

Q

quantization noise 3-43
quantized filters 1-6

real signals
specifying initialization of 6-25
suppressing initialization of 3-51
registers
adding code for input 6-2
adding code for output 6-3
adding for optimization 6-4
pipeline 3-58
Represent constant values by aggregates
option 3-45
requirements
identifying for HDL code and test
benches 3-13

Index-7

Index

product 1-9
Reserved word postfix option 3-34
reserved words
setting postfix for resolving 3-34
specifying postfix for 6-37
ReservedWordPostfix property 6-37
Reset asserted level option 3-28
reset input port 6-39
naming 3-38
Reset port options 3-38
reset properties 5-2
Reset type option 3-26
Reset value option 3-67
ResetAssertedLevel property 6-38
ResetInputPort property 6-39
resets
configuring for test benches 3-67
customizing 3-26
defaults for 3-10

setting asserted level for from command

line 6-38

setting asserted level for from GUI 3-28

setting style of 3-26
specifying forced 6-22
specifying test bench 6-42
types of 6-40
ResetType property 6-40
ResetValue property 6-42
rising_edge function 3-47 6-56

S

SafeZeroConcat property 6-43
scale values 3-43 6-44
ScaleWarnBits property 6-44
second-order section (SOS) filters 1-6
sections

instance 6-29
simulator 4-7
SimulatorFlags property 6-45

Index-8

SOS filters 1-6
Split arch. file postfix option 3-23
Split entity and architecture option 3-23
Split entity file postfix option 3-23
SplitArchFilePostfix property 6-46
SplitEntityArch property 6-47
SplitEntityFilePostfix property 6-48
stimulus
setting for test benches 3-72
specifying 6-52
specifying user-defined 6-53
subtraction operations
specifying input type treatment for 3-52
type casting 6-7
summation technique 6-19
symmetric FIR filters 1-6
synchronous resets
setting from command line 6-40
setting from GUI 3-26
synthesis 3-59

T

Target directory option
redirecting output with 3-21
renaming test bench file with 3-61

target language 3-18

TargetDirectory property 6-49

TargetLanguage property 6-50

test bench files 3-9

test bench properties 5-6

test benches
compiling 4-7
configuring clock for 3-65
configuring resets for 3-67
customizing 3-61
defaults for 3-12
error margin for 6-18
generated HDL output for 1-8
generating DO file 4-12

Index

HDL 4-3
naming 6-51
renaming 3-61
running 4-8
setting error margin for 3-70
setting input data hold time 3-69
setting names of 3-20
setting stimuli for 3-72
specifying clock enable input for 6-21
specifying forced clock input for 6-20
specifying forced resets for 6-22
specifying reset value for 6-42
specifying stimulus for 6-52
specifying type of 3-62
specifying user-defined stimulus for 6-53
test methods 4-2
TestBenchName property 6-51
TestBenchStimulus property 6-52
TestBenchUserStimulus property 6-53
time
clock high 6-10
clock low 6-12
hold 6-23
timescale directives
specifying use of 6-58
suppressing 3-50
transposed Direct Form I filters 1-6
transposed Direct Form II filters 1-6
transposed FIR filters 1-6
tree FIR final summation 3-57
tutorial files 2-2
tutorials 1-12
basic FIR filter 2-3
IIR filter 2-43
optimized FIR filter 2-23
type casting 6-7
for addition and subtraction
operations 3-52

)

Use ’rising_edge’ for registers option 3-47
Use Verilog “timescale directives option 3-50
UseAggregatesForConst property 6-54

User defined response option 3-72
UserComment property 6-55

UseRisingEdge property 6-56
UseVerilogTimescale property 6-58

\"

Verilog 1-2
file extension 6-59
selecting 3-18
Verilog file extension option
naming filter file with 3-20
renaming test bench file with 3-61
Verilog reserved words 3-34
Verilog test benches 3-62
VerilogFileExtension property 6-59
VHDL 1-2
file extension 6-60
selecting 3-18
VHDL file extension option
naming filter file with 3-20
renaming test bench file with 3-61
VHDL reserved words 3-34
VHDL test benches 3-62
VHDLFileExtension property 6-60

y 4

Zeros
concatenated 3-49
zeros, concatenated 6-43

Index-9

	toc
	Getting Started
	What Is the Filter Design HDL Coder?
	Expected Users
	Key Features and Components
	FDATool Plug-In — the GUI
	Command-Line Interface
	Quantized Filters — the Input
	Filter Properties — Input Parameters
	Generated HDL Files — the Output

	Installation
	Checking Product Requirements
	Installing the Software

	Getting Help with the Filter Design HDL Coder
	Information Overview
	Online Help
	Using “What's This?” Context-Sensitive Help
	Demos and Tutorials

	Applying the Filter Design HDL Coder to the Hardware Design Proc

	Tutorials — Generating HDL Code for Filters
	Creating a Directory for Your Tutorial Files
	Basic FIR Filter Tutorial
	Designing a Basic FIR Filter
	Quantizing the Basic FIR Filter
	Configuring and Generating the Basic FIR Filter's VHDL Code
	Getting Familiar with the Basic FIR Filter's Generated VHDL Code
	Verifying the Basic FIR Filter's Generated VHDL Code

	Optimized FIR Filter Tutorial
	Designing the FIR Filter
	Quantizing the FIR Filter
	Configuring and Generating the FIR Filter's Optimized Verilog Co
	Getting Familiar with the FIR Filter's Optimized Generated Veril
	Verifying the FIR Filter's Optimized Generated Verilog Code

	IIR Filter Tutorial
	Designing an IIR Filter
	Quantizing the IIR Filter
	Configuring and Generating the IIR Filter's VHDL Code
	Getting Familiar with the IIR Filter's Generated VHDL Code
	Verifying the IIR Filter's Generated VHDL Code

	Generating HDL Code for a Filter Design
	Overview of Generating HDL Code for a Filter Design
	Opening the Generate HDL Dialog
	What Is Generated by Default?
	Default Settings for Generated Files
	Default Settings for Register Resets
	Default Settings for General HDL Code
	Default Settings for Code Optimizations
	Default Settings for Test Benches

	What Are Your HDL Requirements?
	Setting the Target Language
	Setting the Names and Location for Generated HDL Files
	Setting Filter Entity and General File Naming Strings
	Redirecting Filter Design HDL Coder Output
	Setting the Postfix String for VHDL Package Files
	Splitting Entity and Architecture Code into Separate Files

	Customizing Reset Specifications
	Setting the Reset Style for Registers
	Setting the Asserted Level for the Reset Input Signal

	Customizing the HDL Code
	Specifying a Header Comment
	Specifying a Prefix for Filter Coefficients
	Setting the Postfix String for Resolving Entity or Module Name C
	Setting the Postfix String for Resolving HDL Reserved Word Confl
	Setting the Postfix String for Process Block Labels
	Naming HDL Ports
	Specifying the HDL Data Type for Data Ports
	Suppressing Extra Input and Output Registers
	Minimizing Quantization Noise for Fixed-Point Filters
	Representing Constants with Aggregates
	Unrolling and Removing VHDL Loops
	Using the VHDL rising_edge Function
	Suppressing the Generation of VHDL Inline Configurations
	Specifying VHDL Syntax for Concatenated Zeros
	Suppressing Verilog Time Scale Directives
	Suppressing the Initialization of Signals of Type REAL
	Specifying Input Type Treatment for Addition and Subtraction Ope

	Setting Optimizations
	Optimizing Generated Code for HDL
	Optimizing Coefficient Multipliers
	Optimizing Final Summation for FIR Filters
	Optimizing the Clock Rate with Pipeline Registers
	Setting Optimizations for Synthesis

	Customizing the Test Bench
	Renaming the Test Bench
	Specifying a Test Bench Type
	Configuring the Clock
	Configuring Resets
	Setting a Hold Time for Data Input Signals
	Setting an Error Margin for Optimized Filter Code
	Setting Test Bench Stimuli

	Generating the HDL Code

	Testing a Filter Design
	Overview of the Test Methods
	Testing with an HDL Test Bench
	Generating the Filter and Test Bench HDL Code
	Starting the Simulator
	Compiling the Generated Filter and Test Bench Files
	Running the Test Bench Simulation

	Testing with a ModelSim Tcl/Tk DO File
	Generating the Filter HDL Code and Test Bench DO File
	Starting ModelSim
	Compiling the Generated Filter File
	Execute the ModelSim DO File

	Properties — Categorical List
	Language Selection Properties
	File Naming and Location Properties
	Reset Properties
	Header Comment and General Naming Properties
	Port Properties
	Advanced Coding Properties
	Optimization Properties
	Test Bench Properties

	Properties — Alphabetical List
	Functions — Alphabetical List
	Examples
	Tutorials
	Basic FIR Filter Tutorial
	Optimized FIR Filter Tutorial
	IIR Filter Tutorial

	tables
	HDL Requirements Checklist

